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Introduction 
Western Norway Research Institute is a  partner in the project "Energy- and environmental savings in 

Lerum Frakt BA" together with Lerum Frakt, a local transport provider responsible for distributing 

products from Lerum, a maker of jam and lemonade based in Sogndal, Norway. Lerum is located in a 

region outside the most densely populated areas in Norway where the biggest markets for their 

products are. Consequently, they need to transport their goods to these markets. Lerum Frakt  is 

responsible for providing this service for Lerum.  

The goods are shipped by truck transport. There is no railway  available in the Sogndal region and 

transport by ship to destinations in southern Norway takes too long 1. Consequently, truck transport 

is the only transport  alternative for  Lerum Frakt.  The road from Sogndal to the biggest market in 

the Oslo-region crosses a mountain pass and the trucks have to climb to an altitude of 1100 meter 

above sea level. There is an alternative route, but it also crosses a mountain pass in an altitude of 

about 1000 meter above sea level. Both Sogndal and Oslo are situated at sea level so the altitude 

difference is equal to the highest point on the roads over the mountain passes. 

The object of the project "Energy- and environmental savings in Lerum Frakt BA" is to analyze how 

transport providers like Lerum Frakt can reduce barriers for implementing more environmentally 

sound transport solutions. Such barriers can be of different kinds. They can be institutional in the 

sense that public policies make it difficult for transport providers to choose better transport 

solutions. An example can be taxes on alternative fuels.  These taxes inhibit spread of solutions that 

may be beneficial for a reduction in energy consumption or for mitigation of emission of greenhouse 

gases or other environmentally harmful gases. Barriers can also be of a practical kind, i.e. distribution 

of alternative fuels is hindered by lack of relevant facilities. Or barriers can be of a cognitive kind, lack 

of knowledge about harmful behavioural effects,  i.e. from driving patterns,  can make it difficult to 

modify that behaviour.  

This document will discuss how driving behaviour can influence energy consumption pr vehicle km. 

By behaviour we mean driving patterns. Other behavioural factors will also have an influence such as 

environmental attitudes or economic motivation.  They are not discussed in this document, we will 

only focus on drivers' use of driving patterns that may have an impact on energy consumption per 

vehicle km. Such driving patterns may be use of cruise control, the amount of idle running, use of 

automatic gear shift  and use of highest gear shifts. 

Emissions of greenhouse gases and other environmentally harmful gases are a direct function of fuel 

consumption since  emissions are found by multiplying fuel consumption by some emission factor pr 

litre fuel.  For diesel, the emission factor for CO2 is 3,17 gram CO2 per kg which, with a density of 0,84 

kg pr litre, gives about 2,66 gram per litre 2. So if we can understand the driving forces for fuel 

consumption, we will also understand the related emissions of greenhouse gases and other 

                                                           
1
 For transport to northern Norway, Lerum Frakt uses the ship route called Hurtigruta which visits all major 

ports from Bergen to Kirkenes in the far north. Destinations for Lerum Frakt north of Trondheim are served by 
Hurtigruta. 
2
 Toutain, J.E.W, Taarneby, G., Selvig, E.,Energiforbruk og utslipp til luft fra innenlandsk transport, Statistisk 

Sentralbyrå, Rapport 2008/49, Table 2.39 and Table 2.1. 
http://www.ssb.no/emner/01/03/10/rapp_200849/rapp_200849.pdf, see also United States Environment 
Protection Agency: Emission Facts: Average Carbon Dioxide Emissions Resulting From Gasoline and Diesel Fuel,   
http://www.epa.gov/oms/climate/420f05001.htm 

http://www.ssb.no/emner/01/03/10/rapp_200849/rapp_200849.pdf
http://www.epa.gov/oms/climate/420f05001.htm
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environmentally  harmful gases. The energy consumption is the key to understand the complete 

environmental impacts of transporting goods by truck. 

The main research questions addressed in this document are:  What are the actual effects of 

observed driving patterns on fuel consumption? What are the expected effects of any behavioural 

change in driving patterns? In order to answer these questions, we also  need to control for the 

impact of road infrastructure, road curvature and terrain so that the independent impact of driving 

behaviour can be assessed. Controlling for these factors means that we compare indicators for 

driving behaviour for the same infrastructure, road curvature and terrain. 

The analysis model 
The dependant variable in the analysis, the effect to be explained, is fuel consumption per vehicle 

km. Another key indicator is energy consumption pr tonne km where an average weight load pr km is 

assumed. Trucks can have a high energy consumption pr vehicle km and still perform favourable pr 

tonne km if they on average can carry more load than smaller trucks with lower energy consumption 

per vehicle km. In general, a higher load factor will yield lower energy consumption pr tonn-km.    

Energy consumption is influenced by several factors. Vehicle type is an obvious one. Newer vehicles 

with improved technology will have less energy consumption pr vehicle km than older vehicles, all 

other things equal. Maximum torque  will also have an impact, we expect trucks with more horse 

power and torque to have higher energy consumption pr vehicle-km. 

Infrastructure is another factor. Better roads with less curvature  and less climbing of steep hills will 

give lower energy consumption per vehicle km. Wider roads and better road surface will also have a 

positive effect. In Norway, use of spike tyres is very common in the winter season. These tyres wear 

down the road surface faster than normal tyres. For society as a whole, better infrastructure often 

implies more transport volume which will cause the positive environmental impact of better 

infrastructure to be counter-balanced by more energy consumption from a growing number of cars 

and trucks.  

The type of goods being transported is also an important factor. Some of the trucks in the fleet we 

analyse will often transport bottles back to the lemonade factory in Sogndal. Bottles have a high 

volume but less weight pr volume. This should reduce the energy consumption pr vehicle km but not 

pr tonn-km since loads with a higher density (more weight pr volume) will have more weight to 

distribute the energy consumption on. We have no indicators that can control for this, so we assume  

a constant weight pr volume ratio for all weight variables used in the analysis. 

Load factor is another obvious factor that influences the energy consumption. A higher load factor 

will mean more weight pr km. This should increase energy consumption pr vehicle km but not pr 

tonne-km. Generally, a higher load factor is desirable since more goods can be transported with the 

same amount of trucks, thereby leading to less energy consumption pr tonne of transported good in 

total. 

This reasoning leads to an important observation: A reduction in energy consumption pr vehicle km is 

in itself not desirable if this reduction comes from less amount of goods being transported. A truck is 

used for transporting goods. In society as a whole, there is a certain amount of goods that needs to 
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be transported during a specific time span, say a year. We regard this amount as given.  The options 

available to public authorities are therefore to reduce the environmental impacts from transport of 

goods by selecting the correct transport mean for the correct transport and by using the applied 

transport means as optimal as possible.  Optimal use of  trucks for transport purposes  will also be 

beneficial for freight companies, truck owners and drivers who will have more secure and profitable 

jobs. 

The population in our analysis is the theoretical set of all trips that can be made with the group of 

trucks included in the analysis. This set is theoretical in the sense that it is impossible to observe it, it 

will  nevertheless have a specific meaning as a demarcation of the set of all observations we can 

possibly make. 

In this document, we will analyze energy consumption relative to these driving pattern indicators:  

 Table 1 List of explanatory variables 

 the average driving speed  (idle running excepted), 

 the relative amount of driving time per day the vehicle is running idle, 

 the relative amount of driving time per day the vehicle uses cruise control, 

 the relative amount of driving time per day the vehicle is driven with an engine load above 

90% of maximum torque, 

 the relative amount of driving time per day the vehicle is driven with the highest gear shift, 

 the relative amount of driving time per day the vehicle is driven by automatic gear shift, 

 the relative amount of driving time per day the vehicle rolls without using engine power, 

 the amount of brake applications per 100 km per day 

 the relative amount of driving time per day spent driving with a high weight load. 

The basic time unit used in this document is one day. This means that we have collected data day by 

day for each vehicle and for each driver.  All data values in the above list are measured as mean per 

day. All relative time amounts are calculated in percentages.   

We will analyze fuel distribution both pr vehicle and pr driver.  Some vehicles are shared between 

drivers. This means that we cannot interpret differences between trucks as differences between 

drivers. Driving patterns are related to drivers and not trucks. Still, any driver's behaviour is modified 

through vehicle attributes such as engine size, model type and emission class. Therefore, the 

interaction of driver and truck will have an impact on drivers' behaviour and also on fuel 

consumption. For example, to what extent cruise control can be applied is not only determined by 

driver's intention but also by the vehicle, its load capacity as well as infrastructure and driving 

conditions.  The interaction between driver and vehicle is studied by analyzing fuel consumption both 

pr truck and pr driver. 

For fuel consumption as well as for each of the variables above, we will analyse distributional 

attributes such as mean, standard error and CV-values. 

Equation 1 Mean value (M) for variable F 
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Equation 2 Standard error (SE) for variable F 

   
 
         
    

   

  
 

Equation 3 CV-Value (Coefficient-of-Variation) 

   
  

 
 

 

Equation 1-Equation 3 show formulas for computing mean, standard error and CV-value for fuel 

consumption or any driving pattern indicator  in the list above. The symbol n is number of 

observations included in the analysis. We use the standard error as the dispersion measurement 

since we are interested in the location of the mean and not any individual observation in the sample 

distribution. The standard error is the standard deviation for the distribution of theoretical means 

that can be calculated as we draw repeated samples from the same population. 

Table 2 shows data for each vehicle included in the analysis.  

Table 2 Vehicle type, vehicle  emission class and vehicle engine type 

Vehicle Type Emission class Engine type Horsepower 

A FH13 62T EM-EC01 D13A480 480 

B FH13 62T EM-EU5 D13C500 500 

C FH13 62T EM-EU5 D13C500 500 

D FH13 62T EM-EU5 D13C500 500 

E FH13 62T EM-EU5 D13C500 500 

F FH13 62T EM-EU5 D13C500 500 

G FH13 62R EM-EU5 D13C540 540 

H FH16 62T EM-EU5 D16G700 700 

I FH16 64R EM-EU5 D16G700 700 

J FH13 62T EM-EU5 D13C500 500 

K FH16 62T EM-EC01 D16C550 550 

L FH13 62T EM-EU5 D13C540 540 

M FH13 62T EM-EC06 D13A520 520 

N Scania Euro 4   

O Scania Euro 5   

 

We will analyze how fuel consumption vary between different vehicles,  between different types of 

vehicles and between vehicles measured by their emission classes and engine type. We will also 

analyze how fuel consumption vary between drivers.  In order to do this we will use analysis of 

variance which tests whether there are statistically significant differences between group means. The 

analysis breaks total variance into two components, the variance between groups and the variance 

inside or within each group. 

Equation 4 Variance within groups 
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Equation 5 Variance between groups 

                  
 

 

Equation 4-Equation 5 show the formulas for calculating between-groups and within-group variances 

for a set of groups in an analysis of variance. In the equations,    symbolizes the mean for all 

observations,     is observation i for variable x in group j,     is the mean for group j and    is number 

of observations in group j. A group can consist of vehicles, vehicle types, emission classes, engine 

types or drivers. 

Equation 6 Calculation of F-statistic for variance analysis 

  

   
     
   

     

 

Equation 6 shows the formula for the test statistic for the analysis of variance. The test statistic is F-

distributed with two types of degrees of freedom. The degree of freedom for between-group 

variance is number of groups (k) minus 1 while the degrees of freedom for variance within groups is 

number of observations in total minus number of groups. 

In a analysis of variance, the null hypothesis is always that the population means for the different 

groups are equal. The alternative hypothesis is that the means are different in some way. Since the 

alternative hypothesis does not state any direction, we perform the test as a two-sided test. As for 

any test, we reject the null hypothesis if the observed probability of getting a test statistic as big as or 

bigger as the one observed, is less than some predefined level which we call the significance level. 

The significance level is the maximum acceptable chance of making a Type I error which is rejecting a 

null hypothesis that is correct. The Type I error is parallel to giving an innocent a guilty verdict in a 

court, it is the worst possible outcome. The probability of making a Type I error is called significance 

probability while the predefined maximum acceptable threshold value for this probability is called 

the significance level.  In all our analysis we will use a significance level of 0,05 which means that we 

accept at most  a 5% chance of making a Type I error. 

The analysis of variance can tell us whether there are significant differences in mean fuel 

consumption between drivers or vehicles or vehicle types. In order to analyze  which drivers or which 

vehicles that are different from each other we will extend the analysis by using four measures on so-

called post hoc effect analysis. These analysis test what drivers or vehicles are different from each 

other by performing a set of pairwise tests between each of them. We cannot use pairwise t-tests 

between means to obtain the same information since the individual error rate involved in any 

individual paired t-test is not equal to the cumulative error rate involved in making several paired 

tests simultaneously with the same data material. The null hypothesis applied in all tests assume that 

all pairs come from the same population and that there are no significant differences between all 

possible  pairs. When performing multiple pairwise tests with the same null hypothesis we must 

correct the cumulative error rate for the number of comparisons made.  
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The error rate is the probability that the observed difference between any two means can arise from 

pure random variation. If this error rate is less than some preset theoretical significance level we will 

reject the null hypothesis. 

The post-hoc analysis will be tested using four measures 3: 

 LSD-test, least-significant-difference which for any pairwise test calculates the minimum 

difference that will yield a statistical significant difference between the effects in the pair. 

The formula assumes equal sample size for all samples being tested. If sample sizes are not 

equal (as is the case in our analysis) a harmonic mean 4 of all sample sizes can be applied. 

 Bonferoni test which corrects the significance level for the number of comparisons made, 

thereby producing a lower real significance level when all comparisons are taken into 

consideration. Any significance probability (the empirical error rate as opposed to the 

theoretical significance level)  will then be compared to this lower significance level.  With 

the Bonferoni significance level effects must therefore  be greater in order to be statistically 

significant than  effects evaluated by the original non-corrected significance level.  

 Scheffe's test which produce a critical value for a difference between any pair that must be 

exceeded in order for that difference to be statistically significant. The calculation for this 

critical value is different than the LSD-test since the test statistics follow the F-distribution 

rather than the t-distribution and since sample sizes for any pair are entered directly in the 

formula rather than as a mean size for all sample sizes. 

 Tukey. This is a correction of the LSD-test which uses a special probability distribution for the  

test statistic. This probability distribution is called the studentized range statistic. The critical 

value for obtaining statistical significant differences between any pair is based on this 

probability distribution. The test assumes equal sample size for all samples.  This can be 

corrected for by using a harmonic mean for all sample sizes. 

We will also study whether fuel consumption is influenced by driving patterns. Driving pattern 

indicators will be used as independent variables while energy consumption pr vehicle km is the 

dependent variable or response variable. The effects of the independent variables are studied using 

bivariate and multivariate regression analysis. The bivariate models employ only one of the 

independent variables as explanatory variable against the dependent while the multivariate uses all  

independent variables simultaneously in the same model. 

This gives us Equation 7 for the bivariate case:  

Equation 7 The linear bivariate regression model 

          

where   and   are parameters in the population and   denotes the residuals in the model. The 

subscript i denotes a model with the i'th  independent variable where the complete list of all 

independent variables are displayed above.   

                                                           
3
 See Stevens, J.J.: Post Hoc Tests in Anova, http://pages.uoregon.edu/stevensj/posthoc.pdf and Newsom, J.T.: 

Post Hoc Tests, http://www.upa.pdx.edu/IOA/newsom/da1/ho_posthoc.pdf 
4
 A harmonic mean of 4 different sample sizes can be calculated as 4/(1/An+1/Bn+1/Cn+1/Dn) where An is 

number of observations in sample A and so on. 

http://pages.uoregon.edu/stevensj/posthoc.pdf
http://www.upa.pdx.edu/IOA/newsom/da1/ho_posthoc.pdf
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The residuals are deviations from the estimated regression line. The less the magnitude of the 

deviations, the better is the model fit. We will use OLS-estimates 5 of the regression coefficients, 

these estimate will yield a smaller sum of squared deviations from the estimated regression line than 

any other estimates of the same regression coefficients. 

The model in Equation 7 is linear in the sense that we expect all observations to lie along a straight 

line relating values for the independent variable with values for the dependent. We will also look at 

models with other expected patterns between the independent and the dependent variable.  

Equation 8 The inverse bivariate regression model 

     
 

  
   

Equation 8 shows an inverse bivariate regression model. This model is more appropriate if we expect 

the process to have some limiting or threshold value that the actual values do not exceed or fall 

below. This can be a more reasonable model since fuel consumption must have a lower limit, it is 

possible to save fuel but only up to a point. The marginal effect of fuel consumption is also smaller 

the less fuel consumption there is to start with. This is also captured by the inverse regression model. 

We will start the analysis by analyzing fuel consumption pr vehicle, pr vehicle type and pr emission 

class. In addition we will analyze fuel consumption pr driver. Then we will present different 

scatterplots which show the relationship between the dependent and each independent variable. 

These are the bivariate regression models. The idea is that the bivariate models can tell us something 

basic and intuitive about the relationship between fuel consumption and the different independent 

variables or indicators. The bivariate models will be easier to interpret and can therefore be a 

sensible starting point for further analysis with a more comprehensive multivariate model. Also, the 

bivariate plots can tell us what functional form to use for the independent variable,  whether the 

effect of the variable is linear or inverse. 

We will present scatterplots based on data from trucks and drivers. In the scatterplots based on truck 

data we will identify each truck in the scatterplot with a colour code. When we present the same 

scatterplot based on drivers' behaviour each driver will be identified by a colour code.   

The bivariate analysis capture the total effect of one independent variable on fuel consumption. This 

means that when one indicator, say use of cruise control is changing, so does the values of other 

indicators. When a driver uses more cruise control, he or she is also likely to use more automatic 

gear shift, spend more of the driving time in highest gear, increase average speed and reduce the 

amount of time spent with a high engine load and so on. The bivariate plots are appropriate for 

capturing the total effect of say more use of cruise control on fuel consumption since we allow for 

other driving behaviour indicators to change their values as well. In this manner, all the effects of 

increased use cruise control are shown in the bivariate plots. These effects include the direct effect, 

the indirect effects of cruise control on other indicators who also have an impact on fuel 

consumption as well as spurious effects of other behavioural indicators which have an effect on both 

use of cruise control and fuel consumption. Of all these effect, only the direct effect is assessed in the 

multivariate regression model. This is the separate, independent effect of a change in use of cruise 

                                                           
5
 OLS stands for Ordinary Least Squares 
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control alone while the values of other behavioural indicators are assumed to be constant. This direct 

effect can be larger or smaller than the total effect depending on the sign and magnitude of the 

indirect and spurious effects that make up the total effect together with the direct effect.   

Consequently, the bivariate plots are giving us important information about the relationship between 

one indicator and fuel consumption, but is limited information in the sense that we have to clear the 

bivariate effect of the indirect and spurious effects in order to find the direct effect of increased use 

of that driving behavioural indicator. 

The multivariate regression model  allows for the fact that there is a relationship between the 

independent variables. If a vehicle is using both cruise control and automatic gear shift, it can be 

difficult to estimate precisely what is the effect of each independent variable if we only study one at 

the time.  Let's say we find a relationship between automatic gear shifts and fuel consumption. If a 

vehicle is using more cruise control while also using more automatic gear shift, how can we be sure 

that the effect we estimate is really for automatic gear shift and not for cruise control? The answer is 

that we cannot be sure so long as we only estimate fuel consumption by one of the explanatory 

variables at the time and leave other explanatory variables out of the equation. If we want to know 

what is the precise effect of one indicator or independent variable we will have to control for the 

others in the same model.  

Similar reasoning can be done for average speed and use of torque above 90% of maximum torque. 

Obviously higher speed requires more torque. But more torque outtake  is also required  when trucks 

are climbing steep hills in low speed. How do we know whether torque or speed is the determining 

factor? By controlling for the effect of the other variable (say speed) when assessing the impact of 

one specific variable (say torque). This control is done in a multiple regression model. 

Equation 9 shows a multivariate regression model where we apply statistical control for all 

independent variables in the same model. This means we use all the independent variables at the 

same time. This will give us a more precise estimate of the separate effect of each of the 

independent variables. Turning to the example above, we can compare  the effect of automatic gear 

shifts for all vehicles that have the same use of cruise control. If we compare two trucks where one 

uses automatic gear shifts and the other does not while the both uses cruise control, we know that 

the difference in fuel consumption between them will be attributable to the difference in gear shift 

modus and not to use of cruise control since the last indicator does not vary. This is the idea behind 

using a multivariate model, we can control for the influence of other independent variables while 

assessing the effect of a single one of them. 

Equation 9 The multivariate regression model 

                             

In the multiple regression models we do not control for cargo type.  This means that we assume that 

cargo type is distributed randomly between different vehicles. We also assume that vehicles are 

driving routes with the same type of infrastructure, road curvature and driving conditions. Any 

violation of these assumption, i.e. if one vehicle is systematically used more on roads that are 

steeper and have more curvature than other vehicles, will undermine the conclusions we draw on 

the effect of driving patterns. We assume that all vehicle have the same chance of having the same 

cargo type and using the  same road.  
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Data collection 
Data are collected using the fleet management system Dynafleet. According to Volvo which has 
designed and developed the system, it is "(a) system for transport planning combined 
with vehicle planning, message handling and automatic reporting of vehicle status and driver times." 
Also according to Volvo, the system "..makes it possible to have a better transport administration 
and follow-up of the running costs of the vehicle, the work contribution of the driver and how 
economically the driver drives." 6 It is the last point, to which degree the system allows for driving 
patterns that are more economical for the driver, the transport operator and not the least the 
vehicle's owner,  that is addressed in this document.  
 
Table 3 Registrations per vehicle  

Vehicle Number of 
days 

A 191 
B 300 
C 278 
D 289 
E 288 
F 307 
G 294 
H 315 
I 292 
J 267 
K 142 
L 183 
M 25 
N 10 
O 73 
 
The Dynafleet system is implemented in fifteen trucks used by the transport operator Lerum Frakt. 

We use an anonymous identifier for each vehicle and each driver since we do not want them to be 

publicly identified. Table 3 shows each vehicle and number of days we have registrations for each of 

them. Table 4 shows the same data for drivers. We do not show the start date for registrations since 

this can identify a vehicle or a driver.  The last date for data collection was January 14th, 2012.  Data 

items are sent from each vehicle to the transport operator's office using GSM, a mobile phone 

network. The system is, according to Volvo, developed for Volvo FH and FM vehicles. 

Table 4 Registrations per driver 

Driver Count 

A 90 

AB 1 

AC 3 

AD 6 

AE 1 

                                                           
6
 http://www.dynafleetonline.com/fm/dynafleet-static/online_documents/online_documents.html 

http://www.dynafleetonline.com/fm/dynafleet-static/online_documents/online_documents.html
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AF 14 

AG 2 

AH 26 

AI 24 

AJ 12 

AK 101 

AL 91 

AM 62 

AN 37 

AP 29 

AQ 4 

AR 1 

AS 1 

AT 42 

AU 22 

AV 2 

AW 9 

AX 15 

AY 82 

AZ 79 

B 143 

BA 75 

BB 1 

BC 5 

BD 2 

BE 77 

BF 65 

BG 21 

BH 70 

BI 61 

BJ 36 

BK 50 

BM 9 

BN 1 

BO 55 

BP 50 

BQ 11 

BR 12 

BS 2 

BT 5 

C 15 

D 136 

E 141 

F 95 

G 114 
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H 34 

I 34 

J 143 

K 14 

L 51 

M 186 

N 212 

O 49 

P 37 

R 22 

S 74 

T 41 

U 5 

V 4 

W 3 

X 53 

Y 16 

Z 2 

AA 1 

 

Results  
The analysis are performed on a per day basis. This indicates that i.e. mean fuel consumption is 

calculated as mean per day  per vehicle or per driver. The same applies to other attributes, the 

amount of time spent using cruise control is for example calculated relative to total driving time per 

vehicle or per driver per day.  Only vehicles or drivers travelling more than 100 km per day are 

included in the analysis. 

Fuel consumption 
Table 5 7shows statistics for fuel consumption by vehicle. We note that there are some differences 

between different vehicles. Vehicle I has the largest mean and it is 1,5 litre per 10 km  times bigger 

than the mean for the vehicle with the lowest mean, vehicle L. Vehicle L has fewer observations than 

most other vehicles, so the result for this vehicle could be more uncertain. Still, the CV-value for the 

vehicle does not suggest that it has more variations than other vehicles, rather the opposite seems to 

be the case.   

Table 5 Fuel consumption in litre per 10 km per vehicle 

Vehicle Number of 
observations 

Mean Std Cv Min Max Horse-
power 

A 181 4,3 0,062 1,4 2,2 6 480 

B 300 4,6 0,04 0,9 3 6,3 500 

C 278 4,6 0,047 1 2,7 6,9 500 

                                                           
7
 We have deleted 10 observations for vehicle A because of unreasonable data items. We refer to appendix A 

where the observations are documented. 
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D 289 4,7 0,046 1 2,4 6,8 500 

E 288 4,6 0,043 0,9 2,9 6,7 500 

F 307 4,7 0,044 0,9 2,2 7,8 500 

G 294 4,9 0,048 1 2,6 7,2 540 

H 315 4,9 0,045 0,9 2,7 7,4 700 

I 292 5,1 0,044 0,9 3,2 7,7 700 

J 267 4,7 0,047 1 3 8,3 500 

K 142 4,2 0,066 1,6 2,3 5,6 550 

L 183 3,6 0,019 0,5 2,2 4 540 

M 25 4,3 0,135 3,1 3,4 6,2 520 

N 10 5,8 0,36 6,3 3,7 7,9 
 O 73 4,3 0,1 2,4 2,6 5,9 
 P 64 5,1 0,108 2,1 3,3 7,1 
 

        Total 3308 4,6 0,015 0,3 2,2 8,3 
  

It should be noted that vehicle I with the larges mean fuel consumption also has the largest engine. 

There is obviously a trend towards higher consumption the more horsepower a vehicle has. Figure 1 

shows this relationship with mean consumption per vehicle on the Y-axis and the vehicle's 

horsepower on the X-axis. The figure suggests that engine size has an important impact on fuel 

consumption. Still, the differences between vehicles with same number of horsepower is striking. 

Vehicles G and L have both 540 horsepower but vehicle G uses 1,3 litre per 10 km more on average. 

Vehicle G's mean consumption is closer to  vehicles with a lot more horsepower such as vehicles I 

and H. From the database with fuel consumption registered pr driver we can observe that vehicle G is 

driven by several drivers which could be an important explanation for the vehicle's fuel consumption. 

Figure 1 Horsepower vs fuel consumption 

 

Table 6 Descriptive statistics  for fuel consumption per 10 km 
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N 3308 

Mean 4,6 

Standard deviation 0,0150 

CV 0,3 

Min (P0) 2,2 
P10 3,6 
P25 4,0 
P50 (median) 4,6 
P75 5,2 
P90 5,7 

Max 8,3 
 

Table 6 shows descriptive statistics and percentiles for the distribution of fuel consumption per 10 

km per vehicle. The P10 value is such that that 10% of all observations in the distribution have lower 

or equal value to the P10 value. The P25 value is such that 25% of the distribution have lower or 

equal value and so on. The P90 value is also such that only 10% of the distribution have higher values 

than this value, consequently the P75 value is such that 25% of the distributions have higher value 

and so on. 

As the table shows, 90% of all observations lie above 3,6 litre per 10 km. With a large data set, we 

can interpret this such that there is only 10% chance of getting a fuel consumption lower or equal to 

3,6 litre. Accordingly, there is a 50% chance of getting a fuel consumption lower or equal to 4,6 litre 

per 10 km and there is a 10%  chance of getting a fuel consumption higher than 5,7 litre per 10 km.   

Figure 2 shows a histogram for the distribution of fuel consumption per 10 km. A histogram shows 

how many percent of a distribution that falls within different value intervals with equal size. Number 

of intervals is determined as square number of observations included in the analysis, this is the same 

approach used by i.e. Excel.  The histogram shows endpoints for each of the intervals. When there 

are many intervals, the endpoint of every second interval will be shown. The intervals are found by 

dividing the value range into a specified number of intervals with equal distance between the 

endpoint in each interval. The histogram in Figure 2 shows a fairly symmetrical distribution where  

most values for fuel consumption falls in the intervals from 3 to 6,6 litre per 10 km. It also shows that 

a very small percentage of the observations (0,7%) have a higher value than 6,6 litre per 10 km. 

Figure 2 Histogram fuel consumption per 10 km 
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Analysis of variance 

Vehicles 

Table 7 shows the test statistics for an analysis of variance of fuel consumption by vehicle. The test 

statistics tell us that there are highly significant differences between the vehicles, some vehicles have 

a systematic higher fuel consumption than others. In order to test which vehicles this concerns, we 

will perform post hoc analysis with a pairwise comparison of each effect corrected for the number of 

comparisons made as described above. 

Most vehicles are driven by more than one driver. The results presented for vehicles should 

therefore not be interpreted as differences between drivers. 

Table 7 Analysis of variance (ANOVA) of fuel consumption by vehicle 

Variance source 

Sum-of-
Squares 
          (A) 

Degrees-of-
freedom 
        (B) 

Mean sum of 
squares 
        (C=A/B) 

Test statistic 
     (f) 

Significance 
probability  
       (p) 

Between groups 410,614138 14 29,3295813 50,9446619 6,408E-129 

Within groups 1890,07075 3283 0,57571451 
   

 

Table 8 Differences between vehicles' mean fuel consumption 

  
L K O M A B E C J D F H G I 

  
3,562 4,169 4,263 4,280 4,318 4,576 4,586 4,589 4,678 4,693 4,695 4,909 4,944 5,106 

P 5,137 1,575 0,968 0,874 0,857 0,819 0,561 0,551 0,548 0,459 0,443 0,442 0,228 0,193 0,031 

I 5,106 1,544 0,937 0,843 0,826 0,788 0,530 0,520 0,517 0,428 0,413 0,411 0,197 0,162 
 G 4,944 1,382 0,775 0,681 0,664 0,626 0,368 0,358 0,355 0,266 0,251 0,249 0,035 

  H 4,909 1,347 0,740 0,645 0,629 0,591 0,332 0,322 0,320 0,231 0,215 0,214 
   F 4,695 1,133 0,526 0,432 0,415 0,377 0,119 0,109 0,106 0,017 0,001 
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D 4,693 1,132 0,524 0,430 0,414 0,376 0,117 0,107 0,105 0,015 
     J 4,678 1,117 0,509 0,415 0,399 0,360 0,102 0,092 0,090 

      C 4,589 1,027 0,420 0,325 0,309 0,271 0,012 0,002 
       E 4,586 1,025 0,417 0,323 0,307 0,268 0,010 

        B 4,576 1,015 0,407 0,313 0,297 0,258 
         A 4,318 0,756 0,149 0,055 0,038 

          M 4,280 0,718 0,111 0,016 
           O 4,263 0,702 0,094 

            K 4,169 0,607 
              

We have 15 vehicles 8  that can be compared to each other. This gives (15*14)/2 = 105 possible 

pairwise comparisons. Table 8 shows these pairwise comparisons. The table is ordered by magnitude 

of mean so that the rows shows the mean in decreasing order with the smallest mean left out. The 

columns are the same means  ordered in increasing order, starting with the smallest and with the 

highest left out. So the smallest mean is left out in the rows and the largest mean is left out in the 

columns 9. The row and column headings include the mens themselves to make the comparisons 

more transparent.  

There are an unequal number of observations between each group or vehicle. To correct for this we 

have calculated the harmonic mean for number of observations for all vehicles.  

Equation 10 Harmonic mean 

 

 
 
  

 
   

 

Equation 1 shows how the harmonic mean can be calculated for all groups in the analysis. This 

calculation gives 126,9 number of observations on average per group. 

We start by using the LSD-test which gives a critical value for the differences in Table 8. Every 

difference larger than this critical value is assessed as significant.  

                     

where MSE is the mean square error, the mean sum of squares for the within group variance from 

Table 7 and n' is the harmonic mean for all group sizes. The value    is the critical value from the t-

distribution with within-group degrees of freedom from Table 7. The test statistic for the LSD-test is 

0,1868 which means that all absolute differences between means greater than this critical value is 

evaluated as significant. 

Table 9 shows which differences are significant according to the LSD-test. Starting with the rows, the 

table shows that vehicle I has higher fuel consumption than all other vehicles except H and G. 

                                                           
8
 Dynafleet is installed in 16 vehicles, but we have only 10 registrations for vehicle N and they are all from 2010. 

We have not included  vehicle N  in the analysis since we consider the number of registrations to be too small 
over a too limited time span. 
9
 See http://pages.uoregon.edu/stevensj/posthoc.pdf  

http://pages.uoregon.edu/stevensj/posthoc.pdf
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Starting with the columns vehicle L has lower fuel consumption than all other vehicles. Since the 

table is sorted in increasing order along the columns and deceasing order along the rows, the 

differences will be smaller as we read the table from left to right. The highest amount of significant 

differences will therefore be on the upper left side of the table.  

 Table 9 Significant differences (marked with *)  according to the LSD-test 

  
L K O M A B E C J D F H G I 

  
3,6 4,2 4,3 4,3 4,3 4,6 4,6 4,6 4,7 4,7 4,7 4,9 4,9 5,1 

P 5,1       *       *       *       *       *       *       *       *       *       *       *       *       * 
 I 5,1       *       *       *       *       *       *       *       *       *       *       *       * 

  G 4,9       *       *       *       *       *       *       *       *       *       *       * 
   H 4,9       *       *       *       *       *       *       *       *       *       *       * 
   F 4,7       *       *       *       *       * 

         D 4,7       *       *       *       *       * 
         J 4,7       *       *       *       *       * 
         C 4,6       *       *       *       *       * 
         E 4,6       *       *       *       *       * 
         B 4,6       *       *       *       *       * 
         A 4,3       * 

             M 4,3       * 
             O 4,3       * 
             K 4,2       * 
              

The Bonferoni test finds the familywise significance level which is the cumulative significance level 

for a set of groups, a family, which is tested against itself 10. The individual pre-set significance level is 

the level for any pairwise comparison, the familywise significance level is the level that all individual 

pairwise tests must satisfy in order for the individual significance level to be the same for all tests 

when they are performed together. 

Equation 11 Familywise significance level 

            

where    is the familywise significance level and c is number of comparisons. This number c is 

calculated as (n(n-1))/2 where n is number of groups tested 11. In order to test which pairwise 

comparisons satisfy the familywise significance level, we calculate the critical t-value for the new 

familywise significance level. The critical t-value is compared to the empirical t-values from the 

pairwise t-tests. A t-value for a pairwise test between two groups  is found by applying  Equation 12. 

Equation 12 T-test for a pairwise comparison 

                                                           
10

 See http://www.upa.pdx.edu/IOA/newsom/da1/ho_posthoc.pdf 
11

 A vehicle or a driver is also a group since there are many registrations for each vehicle and driver. 

http://www.upa.pdx.edu/IOA/newsom/da1/ho_posthoc.pdf
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Equation 13 Bonferoni new pairwise significance level 

   
  

 
 

 

Equation 13 shows the new pairwise significance level corrected for the number of comparisons 

made. The new pairwise critical t-value is found by using the new significance level from Equation 13 

and errorwise degrees of freedom, 3283, from Table 7. 

Table 10 Pairwise t-tests  

  
L K O M A B E C J D F H G I 

  
3,6 4,2 4,3 4,3 4,3 4,6 4,6 4,6 4,7 4,7 4,7 4,9 4,9 5,1 

P 5,1 14,43 7,68 5,94 4,98 6,59 4,89 4,75 4,67 3,91 3,79 3,80 1,95 1,64 0,26 

I 5,1 32,21 11,84 7,70 5,83 10,33 8,92 8,39 8,02 6,63 6,44 6,58 3,12 2,48   

G 4,9 26,86 9,53 6,13 4,65 7,97 5,91 5,53 5,29 3,96 3,76 3,82 0,54     

H 4,9 27,41 9,26 5,87 4,43 7,66 5,51 5,13 4,89 3,52 3,31 3,37       

F 4,7 23,62 6,64 3,94 2,93 4,94 2,00 1,75 1,65 0,26 0,02         

D 4,7 22,65 6,52 3,90 2,91 4,84 1,92 1,69 1,59 0,23           

J 4,7 22,07 6,30 3,75 2,80 4,62 1,66 1,44 1,35             

C 4,6 20,29 5,19 2,94 2,17 3,47 0,20 0,04               

E 4,6 21,64 5,29 2,96 2,17 3,53 0,17                 

B 4,6 23,11 5,30 2,90 2,11 3,50                   

A 4,3 11,63 1,64 0,46 0,26                     

M 4,3 5,28 0,74 0,10                       

O 4,3 6,88 0,79                         

K 4,2 8,89                           
 

Table 10 shows the pairwise t-test for the vehicle tests. The new significance level is 0,0095  which 

gives a new critical t-value of 2,6 with 3283 degrees of freedom. Table 11 shows which pairwise 

comparisons are evaluated as significant with the new critical t-value from the Bonferoni test. We 

see much the same picture as in Table 9. All in all there are 76 significant differences with the 

Bonferoni test while there were 80 significant tests with the LSD-test. L has one more significant 

difference against K while vehicle M has three less significant tests (against vehicles C,E,B) and 

vehicles H  and G has one less significant test each (both against vehicle P). 

Table 11 Significant differences (marked with *)  according to the Bonferoni-test 

  
L K O M A B E C J D F H G I 

 
Diff 3,6 4,2 4,3 4,3 4,3 4,6 4,6 4,6 4,7 4,7 4,7 4,9 4,9 5,1 

P 5,1     *     *     *     *     *     *     *     *     *     *     * 
   I 5,1     *     *     *     *     *     *     *     *     *     *     *     * 
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G 4,9     *     *     *     *     *     *     *     *     *     *     * 
   H 4,9     *     *     *     *     *     *     *     *     *     *     * 
   F 4,7     *     *     *     *     * 

         D 4,7     *     *     *     *     * 
         J 4,7     *     *     *     *     * 
         C 4,6     *     *     * 

 
    * 

         E 4,6     *     *     * 
 

    * 
         B 4,6     *     *     * 

 
    * 

         A 4,3     * 
             M 4,3     * 
             O 4,3     * 
             K 4,2     * 
              

The Scheffe test calculates a new critical value for the pairwise differences between the vehicles. If 

the actual difference is greater than this critical value, the difference is statistically significant with 

the individual significance level satisfied for all comparisons simultaneously. Scheffe's test statistic 

calculates one critical difference for each pair and not one critical value for all comparisons. Also, 

Scheffe's test statistic is the only test statistic so far for post hoc comparisons that take the actual 

pairwise sample sizes into the calculation. Scheffes test statistic does  not use an approximation of an 

equal sample size for all comparisons as the other test statistics do. 

 

Equation 14 The critical Scheffe value for difference between mean i and mean j 

               
 

  
 
 

  
  

Equation 14 shows the formula for the calculation of the critical value for the difference between 

mean i and mean j where k is number of groups minus one (which is 14) and fcrit is the critical value 

from the f-distribution with degrees of freedom equal to  k and v where v is within group variance 

degrees of freedom from Table 7 (3283). The critical f-value is 1, 1,6948 in this case. MSE is within 

group variance mean sum of squares from Table 7 (0, 0,576).  

Table 12 Scheffe critical values for pairwise differences 

  
L K O M A B E C J D F H G I 

  
3,6 4,2 4,3 4,3 4,3 4,6 4,6 4,6 4,7 4,7 4,7 4,9 4,9 5,1 

P 5,1 0,537 0,556 0,633 0,872 0,537 0,509 0,511 0,512 0,514 0,511 0,508 0,507 0,510 0,510 

I 5,1 0,348 0,378 0,484 0,770 0,350 0,304 0,307 0,310 0,313 0,307 0,302 0,300 0,305   

G 4,9 0,348 0,378 0,483 0,770 0,349 0,303 0,306 0,309 0,312 0,306 0,302 0,300     

H 4,9 0,344 0,374 0,480 0,768 0,345 0,298 0,301 0,304 0,307 0,301 0,296       

F 4,7 0,345 0,375 0,481 0,769 0,346 0,300 0,303 0,306 0,309 0,303         

D 4,7 0,349 0,379 0,484 0,770 0,350 0,305 0,308 0,310 0,314           

J 4,7 0,355 0,384 0,488 0,773 0,356 0,311 0,314 0,317             

C 4,6 0,352 0,381 0,486 0,772 0,353 0,308 0,311               
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E 4,6 0,349 0,379 0,484 0,771 0,351 0,305                 

B 4,6 0,347 0,376 0,482 0,769 0,348                   

A 4,3 0,387 0,414 0,512 0,789                     

M 4,3 0,788 0,802 0,856                       

O 4,3 0,512 0,532                         

K 4,2 0,413                           

 

Table 12 shows the critical values for the pairwise differences. If we contrast these critical values 

with the actual differences in Table 8 we get Table 13 which shows what differences are statistically 

significant. These are marked with an asterisk (*) in the table. We observe that this is a more 

conservative test since there are fewer statistically significant differences than what we found with 

the LSD test and the Bonferoni test.   

Table 13 Significant differences (marked with *)  according to the Scheffe-test 

  
L K O M A B E C J D F H G I 

  
3,6 4,2 4,3 4,3 4,3 4,6 4,6 4,6 4,7 4,7 4,7 4,9 4,9 5,1 

P 5,1      *      *      *        *      *      *      *             

I 5,1      *      *      *      *      *      *      *      *      *      *      *       

G 4,9      *      *      *        *      *      *      *             

H 4,9      *      *      *        *      *      *      *             

F 4,7      *      *          *                   

D 4,7      *      *          *                   

J 4,7      *      *          *                   

C 4,6      *      *                         

E 4,6      *      *                         

B 4,6      *      *                         

A 4,3      *                           

M 4,3                             

O 4,3      *                           

K 4,2      *                           

 

At last we perform the Tukey test on the same pairwise comparisons. The Tukey test uses a critical 

value from the studentized range distribution 12.  The degrees of freedom for this critical value are 

number of groups (in this case 15)  and within group variance degrees of freedom from Table 7 

(which is 3283). By using a look-up table for the studentized range distribution 13  we find the critical 

value q to be 5,45.  

Equation 15 The Tukey HSD test statistics 

                                                           
12

 http://en.wikipedia.org/wiki/Tukey's_range_test 
13

  See http://www.watpon.com/table/studen_range.pdf .    For the same degrees of freedom, this web site 
http://cse.niaes.affrc.go.jp/miwa/probcalc/s-range/srng_tbl.html reports smaller critical value for i.e. k=15 and 
v=Infinity.  We have assumed that the smaller critical value is due to one-sided as opposed to two-sided test.  
With this assumption, we have used the two-sided critical value in this case. The value for v is set to infinity 
since the table stops at specific values for v = 120. 

http://en.wikipedia.org/wiki/Tukey's_range_test
http://www.watpon.com/table/studen_range.pdf
http://cse.niaes.affrc.go.jp/miwa/probcalc/s-range/srng_tbl.html
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Equation 15 shows the formula for the Tukey HSD test statistic. HSD stands for honest significant 

difference. The test statistic is a critical value so that any pairwise differences exceeding this test 

statistic are evaluated as significant. The Tukey test statistic requires equal sample size, but for 

unequal sample sizes a common sample size can be approached by using the harmonic mean of all 

sample sizes as discussed above 14.  

Table 14  Significant differences (marked with *)  according to the Tukey hsd-test 

  
L K O M A B E C J D F H G I 

  
3,6 4,2 4,3 4,3 4,3 4,6 4,6 4,6 4,7 4,7 4,7 4,9 4,9 5,1 

P 5,1    *    *    *    *    *    *    *    *    *    *    *       

I 5,1    *    *    *    *    *    *    *    *    *    *    *       

G 4,9    *    *    *    *    *    *                 

H 4,9    *    *    *    *    *                   

F 4,7    *    *    *    *    *                   

D 4,7    *    *    *    *    *                   

J 4,7    *    *    *    *                     

C 4,6    *    *                         

E 4,6    *    *                         

B 4,6    *    *                         

A 4,3    *                           

M 4,3    *                           

O 4,3    *                           

K 4,2    *                           

 

Table 14 shows the result of the Tukey test. We find that this result is roughly the same as for the 

Scheffe test. Interestingly, the Tukey test statistics gives more statically significant results for vehicles 

M and O which have the smallest number of observations . Thus, a reasonable proposition is that 

Scheffe's test  is more accurate since it takes  sample sizes  into account while the other test statistics 

use an approximation of an equal sample size. The harmonic mean used for this approximation gives 

a sample size that is far from the actual sample size of most vehicles since the three vehicles M, P 

and O have very few observations but are still given the same weight as the other vehicles for all test 

statistics except Scheffe's.   

Table 15 Number of significant  comparisons with the different post hoc tests 

 

Number of 
significant 
comparisons Relative 

LSD 81 77,1 % 

                                                           
14

 See Stevens, J., J.:  Post Hoc Tests In Anova, http://pages.uoregon.edu/stevensj/posthoc.pdf 

http://pages.uoregon.edu/stevensj/posthoc.pdf
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Bonferoni 76 72,4 % 

Scheffe 50 47,6 % 

Tukey 57 54,3 % 

 

Table 15 gives a summary of the post hoc tests presented here. The table shows the number of 

comparisons evaluated as statistically significant with the different tests. The number of possible 

comparisons is 105. The LSD test evaluates 77,1% of all comparisons as significant while the same 

number for the Scheffe test is 47,6% . This is quite a difference and it is striking that the only test 

which takes the actual sample sizes into consideration is the most conservative one. We have very 

unequal sample sizes, and based on this judgment we select Scheffe's test as the most appropriate 

one. In the following, we will therefore only use Scheffe's test  for post hoc comparisons. 

Vehicle engine type 

Table 16 shows descriptive statistics for fuel consumption per 10 km distributed on vehicle engine 

type. There are seven different types.  Each engine type has a distinct number of horsepower. As the 

table shows, the engine type with the highest number of horsepower also  have the highest mean 

fuel consumption, except for Iveco where number of horsepower is unknown. Still, the engine type 

with the smallest consumption is not the engine type with lowest number of horsepower. Also, the 

fuel consumption  for the vehicle type with 550 horsepower is smaller on average than the fuel 

consumption for the vehicle type with 480 horsepower. 

Table 16 Fuel consumption by vehicle engine type 

Engine type 
Horse -
power Count Mean Std Cv Min Max 

D13A480 480 181 4,3 0,838 19,4 2,2 6,0 

D13A520 520 25 4,3 0,673 15,7 3,4 6,2 

D13C500 500 1729 4,6 0,758 16,3 2,2 8,3 

D13C540 540 477 4,4 0,945 21,4 2,2 7,2 

D16C550 550 142 4,2 0,783 18,8 2,3 5,6 

D16G700 700 607 5,0 0,788 15,7 2,7 7,7 

Scania  83 4,4 1,013 22,8 2,6 7,9 

Iveco  64 5,1 0,860 16,7 3,3 7,1 

 

Table 17 shows the test statistics for the analysis of variance of fuel consumption by vehicle engine 

type. The table shows that we find a significant difference in fuel consumption between different 

vehicle engine types since the significance probability is lower than the usual threshold value 

(significance level) of 0,05. This indicates that the differences between the different vehicle types are 

systematic and not random. Some vehicle engine types have lower fuel consumption than others. 

Table 17  Analysis of variance (ANOVA) of fuel consumption by vehicle engine type 

Variance source 

Sum-of-
Squares 
          (A) 

Degrees-of-
freedom 
        (B) 

Mean sum 
of squares 
        
(C=A/B) 

Test 
statistic 
     (f) 

Significance 
probability  
       (p) 

Variance 
source 



29 
 

Between groups  177,186017 7 25,3122881 38,8905592 8,5795E-53 2,01235393 

Within groups 2147,8362 3300 0,65085945 
   

       Total 2325,02222 3307         

 

Table 18 shows pairwise comparisons for the vehicle engine types. In all, there are 8 engine types 

which gives 8*(8-1)/2=28 possible comparisons. As discussed above,  we restrict ourselves to a 

Scheffe post hoc analysis of the possible comparisons. To find the Scheffe critical value for each 

comparison, the value that when exceeded will give a statistically significant result, we use two 

degrees of freedom. These are number of groups minus 1, which is 7,   and degrees of freedom for 

the within group variance from Table 17, which is 3300. This gives a critical f-value of 2,012. By 

applying  these values on the individual sample sizes as described in Equation 14, we can produce 

Table 19 which shows the critical value for each pairwise comparison. 

Table 18 Pairwise comparisons for vehicle engine types 

  
D16C550 D13A520 D13A480 D13C540 Scania D13C500 D16G700 

  
4,2 4,3 4,3 4,4 4,4 4,6 5,0 

Iveco 5,1 0,968 0,857 0,819 0,723 0,693 0,501 0,133 

D16G700 5,0 0,835 0,724 0,686 0,590 0,560 0,367 
 D13C500 4,6 0,467 0,357 0,318 0,223 0,193 

  Scania 4,4 0,274 0,164 0,126 0,030 
   D13C540 4,4 0,245 0,134 0,096 

    D13A480 4,3 0,149 0,038 
     D13A520 4,3 0,111 

       

Table 19 Scheffe critical values for pairwise differences 

  
D16C550 D13A520 D13A480 D13C540 Scania D13C500 D16G700 

  
4,2 4,3 4,3 4,4 4,4 4,6 5,0 

Iveco 5,1 0,456 0,714 0,440 0,403 0,504 0,385 0,398 

D16G700 5,0 0,282 0,618 0,256 0,185 0,354 0,143   

D13C500 4,6 0,264 0,610 0,237 0,157 0,340     

Scania 4,4 0,418 0,691 0,401 0,360       

D13C540 4,4 0,289 0,621 0,264         

D13A480 4,3 0,339 0,646           

D13A520 4,3 0,657             

  

Table 20 Significant differences (marked with *)  according to the Scheffe-test for vehicle engine types 

  
D16C550 D13A520 D13A480 D13C540 Scania D13C500 D16G700 

  
4,2 4,3 4,3 4,4 4,4 4,6 5,0 

Iveco 5,1      *      *      *      *      *      *   

D16G700 5,0      *      *      *      *      *      *   
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D13C500 4,6      *        *      *       

Scania 4,4               

D13C540 4,4               

D13A480 4,3               

D13A520 4,3               

 

Table 20 shows the result table from the Scheffe test where each statistically significant pairwise 

comparison is marked with an asterisk (*). Of the total 21 possible comparisons, 15 are statistically 

significant. The engine type with the highest number of horsepower and the Iveco vehicle have a 

significantly higher fuel consumption than all other engine types except for the comparison between 

themselves.  The engine type with 500  horsepower has a significantly  higher fuel consumption than 

three of the four engine types with the lowest fuel consumption. 

Figure 3  shows the relationship between number of horsepower and mean fuel consumption for the 

different engine types. As already mentioned, the engine type D16G700 with 700 horsepower has a 

significantly higher consumption than all other engine types. A difference of 220 in number of 

horsepower (the difference between the highest and lowest group) yields a difference in fuel 

consumption of almost 0,7 litre per 10 km.  On the other hand, the engine type with next highest 

number of horsepower has the lowest mean fuel consumption.   

Figure 3 Mean fuel consumption and number of  horsepower  for different engine types 

 

Drivers 

We have already analyzed differences in fuel consumption between vehicles. In this section, we will 

look at differences in fuel consumption between drivers. Is there a significant difference between 

drivers? First we will look at drivers independent of the vehicles they drive. Then we will analyze 

whether there is a difference in fuel consumption when we distribute drivers on vehicles. Since 

drivers drive more than one vehicle, it is reasonable to control for differences in vehicles when we 
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analyze differences between drivers. If not, we risk assessing differences in vehicle properties as 

differences in driving behaviour. 

We have registered fuel consumption, driving distance and driving behaviour such as use of cruise 

control, use of highest gear etc both for vehicles and drivers. Consequently, we have one database 

for drivers and one for vehicles 15. There are many drivers working for Lerum Frakt AB during one 

year.  Some of them drive only for a short period. In the analysis of drivers we have only included 

drivers that have more than 100 registrations in Dynafleet in the interval January 2011 to January 

2012. Of course, the number of registrations will depend on when the Dynafleet system was installed 

in the vehicles. Also, as for vehicles, only trips longer than 100 km per day are included. 

Table 21 Fuel consumption litre per 10 km  pr driver 

Driver Count Mean Std err Cv Min Max 

D 134 4,1 0,066 1,6 3,1 6,6 

E 130 4,7 0,059 1,3 3,1 6,5 

G 108 4,7 0,086 1,8 2,2 7,7 

J 136 4,5 0,064 1,4 2,9 6,5 

M 173 4,6 0,064 1,4 2,4 6,9 

N 210 4,6 0,047 1 3 6,4 
 

Table 21 shows fuel consumption in litre per 10 km for drivers independent of the vehicles they 

drive. Driver D has the lowest fuel consumption on average while driver E and G have the highest 

consumption. The difference between largest and smallest mean fuel consumption is about 0,6 litre 

per 10 km. 

Table 22 Analysis of variance (ANOVA) of fuel consumption by driver 

Variance source 

Sum-of-
Squares 
          (A) 

Degrees-
of-
freedom 
        (B) 

Mean sum 
of squares 
        
(C=A/B) 

Test 
statistic 
     (f) 

Significance 
probability  
       (p) 

Between groups 34,2080005 5 6,84160011 11,7023103 5,6831E-11 

Within groups 517,403482 885 0,5846367 
  

      Total 551,611483 890 
    

Table 22 shows the analysis of variance for fuel consumption by driver. The ANOVA summary 

statistics show clearly that there are significant differences between drivers.  

Table 23 Differences between drivers in fuel consumption (litre per 10 km) 

  
D J N M G 

 

 4,1 4,5 4,6 4,6 4,7 

E 4,7 0,626 0,243 0,154 0,134 0,026 

                                                           
15

 Technically  speaking, we have two different tables in the same database. 
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G 4,7 0,600 0,217 0,128 0,108 
 M 4,6 0,492 0,109 0,020 

  N 4,6 0,472 0,090 
   J 4,5 0,382 

     

Table 23 shows the pairwise differences between all drivers. As already mentioned, the highest 

difference is about 0,626 litre pr 10 km while the smallest is negligible, 0,026 litre per 10 km. The 

table is ordered so that the biggest differences are in the upper left part of the table. The table also 

shows that the biggest differences are between driver D on one hand and drivers G and E on the 

other. 

Table 24 Scheffe critical values for pairwise differences 

  
D J N M G 

 

 4,1 4,5 4,6 4,6 4,7 

E 4,7 0,314 0,313 0,285 0,296 0,332 

G 4,7 0,330 0,329 0,302 0,313 
 M 4,6 0,293 0,292 0,262 

  N 4,6 0,282 0,281 
   J 4,5 0,310 

     

Table 24 shows Scheffes critical difference for the different pairwise comparisons. If we compare the 

critical differences in Table 24 with the actual ones in Table 23, we see that there are statistically 

significant differences between driver D and all the other drivers. No other pairwise comparisons 

have significant effects which mean the differences may just as well be pure random variations. 

What if we include the vehicles driven by the drivers in the analysis? Table 25 shows descriptive 

statistics for the combination of driver and vehicle. Drivers and vehicles are coupled by selecting on 

same date, same distance, same fuel consumption and same amount of time driven in the two 

database tables, one for vehicles and one for drivers. Not every trip the drivers make can be 

identified by a vehicle, therefore the amount of days driven will not be identical per driver in Table 

25 and Table 21, 

Table 25 Fuel consumption litre per 10 km pr driver and vehicle 

Driver Vehicle Count Mean Std err Cv Min Max 
Horse-
power 

D E 2 5,1 0,159 3,1 4,9 5,2 500 

D J 38 4,6 0,113 2,5 3,1 5,9 500 

D L 6 3,5 0,075 2,1 3,2 3,7 540 

E B 8 5 0,173 3,5 4,1 5,6 500 

E C 4 4,8 0,323 6,8 4,1 5,5 500 

E F 103 4,7 0,068 1,5 3,1 6,5 500 

G F 98 4,7 0,086 1,8 2,2 6,4 500 

J E 124 4,4 0,065 1,5 2,9 6,5 500 

M C 150 4,6 0,063 1,4 3,2 6,9 500 
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N B 500 191 4,5 0,046 1 3 500 

 

We can now perform an analysis of variance on the combination of driver and vehicle. This amounts 

to specifying interaction terms in the analysis since the effect of driving behaviour per driver is 

modified by the vehicles they are driving. Driver and vehicle interact to produce the outcome of the 

analysis. All in all we have 10 combinations and we can indentify each combination by the driver's 

letter and the vehicle's  so that DE is driver D in vehicle E while NB is driver N in vehicle B and so on. 

First letter is the driver's and the second is the vehicle's. An interesting point is whether vehicles 

driven by different drivers score very different on mean fuel consumption. Is there any difference 

between fuel consumption for vehicle B when it is driven by driver N and by driver E? Or is there a 

difference in vehicle F's performance when it is driven by two different drivers E and G? 

Table 26 Analysis of variance for fuel consumption by combination driver/vehicle 

Variance source 

Sum-of-
Squares 
          (A) 

Degrees-of-
freedom 
        (B) 

Mean sum 
of squares 
        (C=A/B) 

Test statistic 
     (f) 

Significance 
probability  
       (p) 

Between groups 15,2608796 9 1,69565329 3,26066285 0,00067389 

Within groups 371,303782 714 0,52003331 
   

Table 27 Pairwise comparisons of driver/vehicle interaction 

  
DL JE NB DJ MC GF EF EC EB 

  
3,5 4,4 4,5 4,6 4,6 4,7 4,7 4,8 5,0 

DE 5,1 1,561 0,658 0,553 0,471 0,456 0,400 0,377 0,319 0,081 

EB 5,0 1,480 0,577 0,473 0,391 0,376 0,320 0,297 0,238 
 EC 4,8 1,242 0,339 0,235 0,153 0,138 0,082 0,059 

  EF 4,7 1,184 0,280 0,176 0,094 0,079 0,023 
   GF 4,7 1,161 0,257 0,153 0,071 0,056 

    MC 4,6 1,105 0,201 0,097 0,015 
     DJ 4,6 1,090 0,186 0,082 

      NB 4,5 1,008 0,104 
       JE 4,4 0,903 

         

Table 27 shows the pairwise comparisons for all combinations of driver and vehicle. It must be 

stressed that many of the combinations have very few observations, hence the table should be 

interpreted with caution.  

Table 28 shows the critical values for pairwise comparisons for combinations of driver and vehicles. 

The critical values are large since there are few observations behind many combinations. As the 

formula for Scheffe critical values in Equation 14 shows, if the number of observations (ni or nj) are 

small, the resulting fraction 1 over number of observations will be larger and the resulting critical 

value will also be larger. Therefore, with a smaller number of observations in each group it takes a 

larger difference for the effect to be statistically significant.  
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An inspection of the actual pairwise comparisons  from Table 27 with the critical ones in Table 28 

show that no pairwise comparisons are significant. The differences between driver/vehicle pairs may 

just as well  arise from pure chance. The differences we found between drivers disappear when 

vehicles are taken into the analysis. It could be that number of observations in each combination of 

driver and vehicle is so small that it is harder to find statistically significant differences between 

them. Therefore, it may be that some differences turn out to be significant at a later stage when 

more data are available. 

Table 28 Scheffe critical values for pairwise comparisons driver/vehicle 

  
DL JE NB DJ MC GF EF EC EB 

  
3,5 4,4 4,5 4,6 4,6 4,7 4,7 4,8 5,0 

DE 5,1 2,430 2,122 2,116 2,159 2,119 2,126 2,125 2,578 2,353 

EB 5,0 1,608 1,086 1,074 1,158 1,080 1,094 1,092 1,823   

EC 4,8 1,921 1,512 1,504 1,565 1,508 1,518 1,517     

EF 4,7 1,250 0,397 0,364 0,565 0,381 0,420       

GF 4,7 1,252 0,402 0,370 0,569 0,387         

MC 4,6 1,239 0,361 0,325 0,541           

DJ 4,6 1,308 0,552 0,529             

NB 4,5 1,234 0,343               

JE 4,4 1,244                 

 
Table 29 Fuel consumption pr driver with more than 50 working days 

Driver Count Mean Std Cv Min Max 

A 86 4,9 0,08 1,6 3,5 6,4 

AK 90 4,9 0,073 1,5 3,1 7,7 

AL 89 5 0,076 1,5 3,5 6,3 

AM 56 3,7 0,062 1,6 3,1 5,2 

AY 79 5 0,088 1,8 3,4 6,6 

AZ 73 5 0,088 1,8 3,2 6,9 

B 89 3,7 0,029 0,8 3,2 4,7 

BA 74 4,7 0,089 1,9 2,6 6,6 

BE 72 5,1 0,107 2,1 3,3 7,1 

BF 58 4,3 0,117 2,7 2,7 6 

BH 58 4,5 0,087 1,9 3,3 6,2 

BI 59 5,2 0,119 2,3 2,9 7,1 

BO 51 4,7 0,103 2,2 3,5 6,3 

D 134 4,1 0,066 1,6 3,1 6,6 

E 130 4,7 0,059 1,3 3,1 6,5 

F 77 4,6 0,107 2,3 2,3 6,5 

G 108 4,7 0,086 1,8 2,2 7,7 

J 136 4,5 0,064 1,4 2,9 6,5 

M 173 4,6 0,064 1,4 2,4 6,9 

N 210 4,6 0,047 1 3 6,4 
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S 74 4,6 0,084 1,8 3 6,4 

X 50 3,6 0,06 1,7 2,4 5,3 

 

Table 29 shows fuel consumption for drivers with 50 working days in the registration period. We 

include this table in order to show how representative the drivers with 100 working days are relative 

to other drivers. We note that the variation is bigger when we include drivers with fewer working 

days.  The difference between maximum and minimum mean value is about 0,6 litre pr 10 km when 

we analyze drivers with 100 working days while the same difference is 1,6 litre per 10 km when we 

include drivers with 50 working days. 

Winter season 

We define winter season as the months December, January, February and March. Since Sogndal is 

located as far north as Fairbanks, Alaska, the winter season is long with many snow storms and cold 

weather. Since the vehicles are travelling over mountain passes with narrow, winding steep roads the 

winter season can cause very challenging driving conditions.  In cold weather the challenge is to keep 

the vehicle and driver's cabin warm during delivery stops. 

Table 30 Analysis of variance (ANOVA) of fuel consumption by time of year 

Variance source 

Sum-of-
Squares 
          (A) 

Degrees-
of-
freedom 
        (B) 

Mean sum 
of squares 
        
(C=A/B) 

Test 
statistic 
     (f) 

Significance 
probability  
       (p) 

Between groups 78,7450186 1 78,7450186 120,723817 1,6645E-27 

Within groups 1761,14006 2700 0,6522741 
  

      Total 1839,88508 2701 
    

Table 30 shows the result of a analysis of variance with fuel consumption as dependent variable and 

time of year as factor or independent variable. The table shows a clear seasonal variations in fuel 

consumption, the effect of winter months is highly  significant. A regression analysis with fuel 

consumption as dependent and a dummy for winter months as independent shows that in winter 

months, the fuel consumption is 0,40 litre higher per 10 km on average. The t-value for the 

regression coefficient is the square root of the f-statistic from the ANOVA-analysis in Table 30 with 

degrees of freedom equal to 2700 and the p-value (significance probability) is exactly the same. 

In this analysis we have not controlled for other driving indicators like average speed, use of cruise 

control, automatic gear shift, weight load and so on. We have only taken time of year into 

consideration. This is the bivariate, total effect of winter months. The driving indicators will also be 

influenced by time of year, it is highly  probable that i.e. use of cruise control will be easier in 

summer months than in winter months. Therefore there are several indirect effects of winter season, 

effects that are mediated through other independent variables. The direct effect of winter months is 

the effect that comes only from winter months and is not mediated through other independent 

variables. We will estimate this direct effect in the section on multivariate regression analysis. 
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Bivariate scatter plots 
We will now turn to bivariate regression analysis in order to study how fuel consumption is related to 

indicators for driving patterns. We have so far confirmed that there are differences between vehicles 

and drivers, but we have not given any indications as to how these differences may be explained. 

Only daily distances bigger than 100 km  are included in the analysis, both for drivers and vehicles.  

A scatterplot is a plot where the dependent variable (the effect variable) is on the Y-axis and the 

independent variable (explanatory variable) is on the X-axis. The Y-axis is fuel consumption in litre 

per 10 km in all plots. The plot will show how and to what extent the dependent variable varies with 

the independent. By using such plots, we can detect trends in the co-variation between the two 

variables. Such trends can be important for specifying the functional form for the effect of X on Y. 

The functional form tells us whether the effect is linear or curvi-linear in some way. A linear effect is 

such that an increase of one unit in X always generates the same average response in the Y-variable. 

A curvi-linear effect is such that the average effect on Y of one unit change in X is dependent on 

where on the X-axis the effect is evaluated. 

Scatterplots only show the relationship between two variables. There is no control for third variables 

in the statistical sense. In order to perform such a control we have to use multivariate regression 

where the effect of several explanatory variables are evaluated simultaneously. In spite of this, 

scatterplots are meaningful in order to visualize the impact on any X on Y. A scatterplot can show us 

what form the relationship between the X and Y variables have and the degree of variation in that 

relationship. 

We will present two scatterplots for each independent variable. One is for vehicles and the other for 

drivers. Any discrepancy between the two plots can give us an idea of the significance of either 

drivers or vehicles for the relationship we study. If the effect of increasing use of cruise control on 

fuel consumption is different for vehicles and for drivers, this can tell us whether driver behaviour or 

vehicle attributes are most important for the impact of cruise control use on fuel consumption. The 

interaction of driver and vehicle can be better assessed by presenting comparable plots for vehicles 

and drivers. 

We will present plots where each vehicle or driver is represented in the plot with a colour code.  

When we evaluate the relationship between, say, average speed on fuel consumption per 10 km, 

each truck or driver will be marked with a distinct colour in the plot. This allow us to assess whether 

some vehicles or drivers  constantly lie above or below the estimated regression line.   

Cruise control 

Table 31 shows descriptive statistics for the relative amount of driving time cruise control was in use 

for vehicles and drivers. On average, cruise control was used in 5,6% of total driving time for vehicles 

and 6,4% of driving time for drivers. The maximum relative amount of driving time was about 86-87% 

for both drivers and vehicles while the minimum was zero percent for both.  The symbol P10 stands 

for the 10th percentile which is the value which is such that 10% of the vehicles have a lower or 

equal use of cruise control. Correspondingly ,75% of the vehicles have a use of cruise control that is 

lower or equal to the P75 value and only 10% of the trucks have a use of cruise control that is greater 

than the P90 value. These values tell us something about how skewed the distribution is. If we look 

at drivers' data,  Table 31 shows that 75% of them use cruise control less than 7,2% of driving time 
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while  10% of them  use cruise control more than 17,1%. Consequently, at some days the cruise 

control has been applied extensively while most of the days use of cruise control is limited.  

Table 31 Descriptive statistics on relative amount of time using cruise control 

 

Pr 
vehicle 

Pr 
driver 

N 3308 2702 

Mean 5,6 6,4% 

Standard error 0,1913 0,2290 

CV 3,4 3,6 

Min (P0) 0,0 0,0% 

P10 0,0 0,0% 

P25 0,0 0,0% 

Median (P50) 1,7 1,9% 

P75 6,0 7,2% 

P90 14,3 17,1% 

Max 86,2 86,9% 
 

The table shows no great differences between the distribution for vehicles and drivers. This suggests 

that vehicle attributes are no limiting factor for increased use of cruise control. Also, there seems to 

be a potential for more use of cruise control since 50% of vehicles and drivers use it less than 2% of 

total driving time. This can be seen from the median values in the table. 

Figure 4 shows a histogram of use of cruise control as percentage of driving time per day per vehicle. 

The figure shows that the distribution is very skewed. At most days the use of cruise control is well 

below well 20%. For 90% of all vehicles, cruise control is used less than 15% of total driving time. All 

in all we might say that cruise control is not used extensively in vehicles. 

Figure 4 Histogram use of cruise control as % of driving time per day pr vehicle 
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Figure 5 shows the same histogram for use of cruise control for drivers. As already mentioned, there 

are no obvious differences in use of cruise control between vehicles and drivers. 

Figure 5  Histogram use of cruise control as % of driving time per day pr driver 

 

 

Figure 6 shows fuel consumption per 10 km by use of cruise control per vehicle. There is a great 

variation in use of cruise control. The figure shows a linear regression line fitted to the observations. 

Each truck has a letter code and this code is identified with the number of observation for that 

vehicle. This means that G_160 means the 160th observation for truck G. Each vehicle also has its 

own colour code. The colour code for each vehicle is shown in Figure 7. The colour identifier for each 

vehicle is the same in all plots. 

Figure 6 Fuel consumption by use of cruise control per vehicle 
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The colours in the plot suggests that vehicles H and P has more use of cruise control than other 

vehicles. 

Figure 7  Colour legend for vehicles 

 

Figure 8 Fuel consumption by use of cruise control per driver 
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Figure 9  Colour legend for drivers 

 

We will also present bivariate plots with data distributed on drivers and not on vehicles. Figure 8 

shows the relationship between use of cruise control and fuel consumption for drivers. Again, there 

is no obvious difference between the relationship between use of cruise control and fuel 
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consumption for vehicles and for  drivers.  In the bivariate plot for drivers, each driver is identified 

with a colour code, just as vehicles are.  Figure 9 shows the colour code for drivers used in the plots.  

When we assess the effect of cruise control on fuel consumption, we use data from the driver's table. 

We will do that for all assessments of regression coefficients from scatterplots if not otherwise stated 

in the text. 

The linear effect of cruise control use is slightly negative, more use of cruise control seems to lower 

fuel consumption. The effect from the bivariate regression analysis is small but significant and the  

regression coefficient suggests that if the use of cruise control is increased by 10 percentage points 

(of total driving time) the expected average reduction in fuel consumption is 0,10 litre pr 10 km.   If a 

truck drives 100 000 km a year, the expected fuel savings by increasing the amount of driving time 

using cruise control by 10% is 1 000 litre or about 2,7 tonnes of CO2 since there is 2,6628 kg CO2 
16 for 

each litre diesel. All in all, use of cruise control explains about 2 percent of total variations in fuel 

consumption. 

The effect of driving behaviour course focusing on fuel consumption 

Some of the drivers participated in a driving behaviour course 17th and 18th of June 2011. The 

purpose of the course was to encourage fuel savings by focusing on driving behaviour. Use of cruise 

control was one of the indicators for driving behaviour that the course focused on. The question is 

then whether there is any change in use of cruise control before and after the course for drivers who 

took part in it. 

Table 32 shows the result. We have performed a t-test for unpaired samples with assumed unequal 

variance in use of cruise control between the drivers 17. The first sample is use of cruise control for 

the drivers before participating in the course while the second sample is the same use after the 

course took place. For one driver the use of cruise control was lower after participating in the course, 

but this effect is not statistically significant. For three drivers we find a statistically significant result, 

these drivers are marked with an asterisk in the table. For one driver the use of cruise control 

increased with nearly 15 percentage points. Before the course, this driver's fuel consumption was on 

average 4,9 litre per 10 km per day. After the course his fuel consumption is 4,5 litre per 10 km. This 

effect cannot alone be attributed to use of cruise control, but is is a sign that  modifying driving 

behaviour, among them use of cruise control, may have a positive impact on fuel consumption. If the 

driver drives 100 000 km a year his yearly fuel consumption will be reduced by 4000 litre and the 

reduction in CO2 emission would be 10,6 tonnes. 

Table 32 Use of cruise control for drivers participating in driving behaviour course 

Driver Before  After Difference t-value 

Degrees- 
of 
freedom p-value 

Signi-
ficance 

AK 2,9 4,1 1,2 0,86 71 0,3912   

                                                           
16

 Toutain, J.E.W, Taarneby, G., Selvig, E.,Energiforbruk og utslipp til luft fra innenlandsk transport, Statistisk 
Sentralbyrå, Rapport 2998/49, Table 2.39 and Table 2.1. 
http://www.ssb.no/emner/01/03/10/rapp_200849/rapp_200849.pdf    
17

 Driver K is not included in the analysis even though the driver participated in the course. There are only two 
registrations for this driver before the course and nine registrations after the course. We consider this to be too 
few registrations to give a meaningful comparison. 

http://www.ssb.no/emner/01/03/10/rapp_200849/rapp_200849.pdf
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AY 9,7 5,9 -3,7 -0,89 46 0,3787   

BA 11,0 25,6 14,6 4,28 69 0,0001       * 

E 2,0 3,5 1,5 1,92 105 0,0572   

L 0,3 5,9 5,6 2,69 33 0,0112       * 

M 0,6 2,6 2,0 3,30 90 0,0014       * 

 

Table 33 Effect on fuel consumption in litre per 10 km  of driving behaviour course 

 
Before After Difference t-value 

Degrees- 
of 
freedom p-value 

Signi-
ficance 

AK 5,0 4,8 -0,1 -0,91 87 0,3635   

AY 4,7 5,1 0,4 2,09 52 0,0415       * 

BA 4,9 4,5 -0,4 -2,31 70 0,0239       * 

E 4,9 4,6 -0,3 -2,05 99 0,0432       * 

L 4,3 4,2 -0,1 -0,54 18 0,5980   

M 4,8 4,3 -0,4 -3,49 162 0,0006       * 

 

Table 33 shows the effect on fuel consumption for the drivers who participated in the course. As the 

table shows, four of six drivers have significantly different fuel consumption after they participated  

in the course. For one of the drivers the effect is positive which means that the fuel consumption 

after the course is higher than what it was before. Therefore, for three of six drivers we can conclude 

that fuel consumption is significantly lower after they participated in the driving behaviour course. 

For these drivers the reduction in fuel consumption is about 0,3-0,4 litre per 10 km which means a 

total reduction over one year of 3000-4000 litre assuming a total driving length of 100 000 km. This 

also implies a reduction in emissions of CO2 in the order of 8-10,7 tonnes a year. 

Automatic gear shift 

Table 34 shows descriptive statistics for the relative amount of driving time the vehicles spent using 

automatic gear shifts. On average, about 90% of the driving time was spent using automatic gear 

shifts. The minimum relative amount of driving time was 5,2% while the maximum was 100% for 

vehicles.  The percentiles (P-values) suggest that the distribution is skewed towards the right. Some 

days use of automatic gear shifts is low while most of the days the use is extensive. For both vehicles 

and drivers, there is a 50% chance that automatic gear shift is used more than roughly 98% of total 

driving time (the median).    

Table 34 Descriptive statistics on relative amount of time using automatic gear shifts  

 
Pr vehicle Pr driver 

N 2838 2566 

Mean 93,5% 94,4% 

Standard error 0,1939 0,1700 

CV 0,2 0,2 

Min (P0) 5,2% 35,5% 

P10 81,1% 83,1% 
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P25 91,1% 92,1% 

Median (P50) 97,9% 98,4% 

P75 99,8% 99,9% 

P90 100,0% 100,0% 

Max 100,0% 100,0% 
 

Figure 10 Histogram use of automatic gear shift pr vehicle  

 

Figure 11  Histogram use of automatic gear shift pr driver 

 

Figure 10 shows a histogram for use of automatic gear shift per vehicle. The figure shows that  50% 

of all vehicles used automatic gear shift more than 95% of driving time. Figure 11  shows the same 

histogram for use of automatic gear shift distributed for drivers. There are no obvious discrepancy 

between the two histograms. Table 34 shows that the minimum use of automatic gear shift is quite 
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higher for drivers than for vehicles, probably reflecting the fact that not all vehicles are equally  

suitable for use of automatic gear shift under equal driving conditions. 

Figure 12 Fuel consumption by use of automatic gear shift by vehicle 

 

 Figure 10 shows a histogram for use of automatic gear shift per vehicle. The figure shows that  50% 

of all vehicles used automatic gear shift more than 95% of driving time. Figure 11  shows the same 

histogram for use of automatic gear shift distributed for drivers. There are no obvious discrepancy 

between the two histograms. Table 34 shows that the minimum use of automatic gear shift is quite 

higher for drivers than for vehicles, probably reflecting the fact that not all vehicles are equally  

suitable for use of automatic gear shift under equal driving conditions. 

Figure 12 shows the relationship between fuel consumption and use of automatic gear shift. The 

estimated linear regression line in the figure suggests that fuel consumption decreases slightly with 

increased use of automatic gear shift. This picture is not unambiguous, the highest registrations of 

fuel consumptions are found among the highest registrations of automatic gear shift. We have a 

clustering of data observations to the right of the figure since most of the time automatic gear shifts 

is in use over 95% of driving time. For vehicles that use automatic gear shift more than 80% of driving 

time there is a considerable spread in fuel consumption. Also, the spread around the regression line 

increases with increasing values of X which indicates heteroskedasticity, a condition that makes the 

regression model inappropriate 18. Figure 12 suggests that differences in fuel consumption must be 

explained by more than one independent variable. 

Figure 13 shows the same relationship distributed on drivers and not vehicles. We see the same 

pattern as for vehicles. There are more observations and bigger variance in the the left part of the 

figure for vehicles than for drivers. This confirms what we stated above, all vehicles may not be 

equally suitable for use of automatic gear shift. 

                                                           
18

 If heteroskedasticity is present, the coefficients are unbiased but their variance is larger than optimal so the 
coefficients are not the best among all unbiased coefficients. 
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Figure 13 Fuel consumption by use of automatic gear shift by driver  

 

On average there seems to be an effect of increased use of automatic gear shift. According to the 

regression line, a 10 percentage points increase in time spent using  automatic gear shifts can reduce 

the fuel consumption on average by 0,32 litre per 10 km. An increase of about 31 percentage points 

in use of automatic gear shift will reduce the fuel consumption by 1 litre per 10 km.  To illustrate, 

assuming a driver drives 100 000 km a year, the effect on fuel consumption  from a 10 percent 

increase in time spent using automatic gear shift would  be 3200 litre per year. With 2,6628 kg CO2 

pr litre diesel  this would imply a reduction in emissions of CO2 of almost 8,5 tonnes. The variation in 

use of automatic gear shifts explains about 12% of the variations in fuel consumption. 

It should be noted that the regression effect described above is calculated for drivers. If we calculate 

the same effect for vehicles the effect is smaller, a 10 percentage points increase in use of automatic 

gear shifts will reduce the fuel consumption with 0,23 litre per 10 km. The model for vehicles explains 

about 8% of variations in fuel consumption. This is because the differences in fuel consumption 

between vehicles are greater than the corresponding differences between drivers. 

We assume that more use of cruise control and automatic gear shifts will give a more even, steady 

speed and less variations in engine load. This is the assumed mechanism for the effects observed in 

the figures above. 

Table 35 Use of automatic gear shifts for participants in driving behaviour course 

 
Before After Difference 

t-
value 

Degrees- 
of- 
freedom 

p-
value 

Signi-
ficance 

Fuel saving 
litre per 10 
km 

AK 98,8 98,4 -0,4 -0,95 88 0,345 
 

-0,1 

AY 98,5 99,8 1,3 1,84 27 0,076 
 

0,4 

BA 99,6 99,9 0,3 2,20 45 0,033 * -0,4 

E 90,4 96,5 6,1 4,84 72 0,000 * -0,3 

L 99,9 100,0 0,1 1,16 12 0,268 
 

-0,1 
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M 88,5 92,9 4,4 3,53 170 0,001 * -0,4 

 

Table 35 shows use of automatic gear shift for participants in the driving behaviour course before 

and after the course was taken. For driver L there are only a few observations so the registrations for 

this driver are very uncertain. Three  of six drivers have significantly increased their use of automatic 

gear shifts after the course.  We have also included the numbers for fuel savings taken from Table 33 

above. These numbers show that for the three drivers who have significantly increased their use of 

automatic gear shift after the course, the fuel savings are about 0,3-0,4 litre per 10 km. This is not 

due to increased use of automatic gear shifts alone, but the table suggests it may have some impact 

on fuel savings.  

 

Average driving speed per day 

Table 36 shows descriptive statistics for average driving speed pr day. The average driving speed was 

62,7 km pr hour pr vehicle pr day and 62,9 km per driver in the registration period. The maximum 

average driving speed was 82,8 for both vehicles and drivers The minimum speed was 36,5 km per 

hour per day for vehicles and  42,2 km per hour per day for drivers. This indicates that driving speed 

varies somewhat less between drivers than between vehicles. The percentiles (P-values) suggest that 

10% of vehicles had an average speed per day less than or equal to 55,8 km/hour while 10% had an 

average speed over 69,8 km/hour. The numbers for drivers are roughly the same. Half the vehicles 

and drivers had an average speed over 62,7 km/hour per day. 

Appendix A documents some unreasonable speed registrations from the drivers' data table that were 

excluded from the analysis. 

Table 36 Descriptive statistics on average driving speed in km per hour 

 
Pr vehicle Pr driver 

N 3308 2701 

Mean 62,7 62,9 

Standard error 0,0984 0,1272 

CV 0,2 0,2 

Min (P0) 36,5 42,2 

P10 55,8 54,7 

P25 59,3 59,0 

Median (P50) 62,7 62,7 

P75 66,3 66,8 

P90 69,8 72,0 

Max 82,8 82,8 
 

Figure 14 Histogram average driving speed km per hour per vehicle per day 
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Figure 14 shows a histogram for average driving speed per vehicle per day. The figure shows that 

most vehicles at most days have a driving speed between roughly 50 and 75 km per hour. About 90% 

of all observations are in this interval. Figure 15 shows the same histogram for drivers. Both 

distributions are quite symmetric, accordingly there is an equal chance of driving slower or faster 

than the mean. Thus, drivers' intention may have a lesser impact than other indicators such as 

terrain, road quality and driving conditions. 

Figure 15 Histogram average driving speed km per hour per driver per day 

 

The average speed is not very high due to frequent climbing of steep hills on narrow, winding roads. 

Also, driving conditions in the winter months prohibit high average speed.  

 Figure 16 shows the relationship between average speed and fuel consumption. As vehicles climb 

steep hills, they need to go slower and use more fuel pr km. Driving on better roads with less 

curvature and less steep hill climbing lowers the fuel consumption and allows for higher average 
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speed. This is presumably the effect captured in the figure. The regression line is an inverse 

regression line, it is non-linear and moves towards a threshold line. The more the X-value increases, 

the more we move towards this threshold line. The shape of the regression line suggests that we can 

reduce the fuel consumption by increasing the speed, but only up to a certain point. Above that 

point, there is no reduction in fuel consumption. Also, the effect of increasing average speed is larger 

when the average speed is low to start with.    

Figure 16 Fuel consumption by average speed for vehicles 

 

Figure 17 Fuel consumption by average speed for drivers 
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Figure 15 shows the same figure for drivers. We see the same trend, but for an average driving speed 

of 45-55 km per hour there seems to be slightly more variations in  fuel consumption for drivers than 

for vehicles. 

The effect of an increase in average speed can best be illustrated as in Table 37 which is calculated 

from drivers' data distribution. The table  shows estimated fuel consumption with  five different 

input values for average speed. We calculate the effect of fuel savings for four of the input values 

relative to the previous one. The table shows that an increase from 30 to 40 km gives a fuel savings 

of 1,3 litre pr 10 km while the savings from 40 to 50 km is 0,8 litre pr 10 km. The  increase in average 

speed from 60 to 70 km an hour on the other hand will yield savings of 0,4 litre pr 10 km which is 

considerably less than going from 30 to 40 km an hour. Also, as the table shows, the higher the 

average speed to start with, the less the effect on fuel savings from an additional increase in speed.  

If average driving speed was increased from 70 to 80 km per hour the decrease in fuel consumption 

approaches zero. 

Table 37 Estimated effect of speed increase on fuel consumption from regression model  

Average 
speed in 

km pr hour 

Estimated 
fuel 

consumption 
in litre pr 10 

km 

Savings 
relative to 
previous 
speed 

Savings 
relative to 
30 km an 
hour 

30 7,3 0 0 

40 6,0 -1,3 -1,3 

50 5,2 -0,8 -2,1 

60 4,7 -0,5 -2,6 

70 4,3 -0,4 -3,0 

80 4,0 -0,3 -3,3 
 

The effects in Table 37 are from the bivariate analysis. As discussed above, it may well be that the 

direct, independent effect of average speed is lower when controlled for other independent 

variables that are also influenced by average speed in a multivariate regression model. 

A driver that drives 100 000 km a year could save 13 000 litre of fuel if average speed could be 

increased from 30 to 40 km an hour. With an average emission of 2,6628 kg CO2 pr litre diesel 19 this 

alone would imply a reduction in emissions of CO2 of more than 34,6 tonnes only for one vehicle. 

Variations in average speed alone explains 11% of all variations in fuel consumption per 10 km per 

day. An increase in driving speed is of course more a question about infrastructure in a difficult 

terrain than about drivers' behaviour. 

Table 38 Average driving speed for participants in driving behaviour course 

 
Before After Difference t-value Degrees- p Signi-

                                                           
19 Toutain, J.E.W, Taarneby, G., Selvig, E.,Energiforbruk og utslipp til luft fra innenlandsk transport, 

Statistisk Sentralbyrå, Rapport 2998/49, Table 2.39 and Table 2.1. 

http://www.ssb.no/emner/01/03/10/rapp_200849/rapp_200849.pdf    

http://www.ssb.no/emner/01/03/10/rapp_200849/rapp_200849.pdf
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of-
freedom 

ficance 

AK 60,0 61,6 1,6 1,46 73 0,1489   

AY 64,5 61,8 -2,7 -1,55 59 0,1253   

BA 63,5 62,8 -0,7 -0,63 71 0,5315   

E 64,1 63,0 -1,1 -1,37 120 0,1729   

L 59,6 61,8 2,1 0,91 22 0,3738   

M 64,0 63,6 -0,4 -0,57 164 0,5689   

 

Table 38 shows the average driving speed for participants in the driving behaviour course in June 

2011. There is no significant change in driving speed for none of the participants. This result is hardly 

surprising since it is terrain, roads and driving conditions that limits the driving speed more than 

drivers' intentions. 

Running idle 

Table 39 shows descriptive statistics for the relative amount of time the vehicles are running idle. The 

statistics are distributed on vehicles and drivers. Preferably, the amount of time spent running idle 

should be as small as possible since the vehicle is not doing any work. On the other hand, stopping 

and starting the engine may cause higher fuel consumption during cold days than simply letting the 

engine run during stops. 

On average, the vehicles spent about 14% of their driving time running idle wile the corresponding 

mean for drivers is about 13%. The maximum amount of time spent running idle was 66% for vehicles 

and a little less, 61%, for drivers. The lowest  10% of vehicles and drivers spent about 4% of total 

driving time running idle. Half of all vehicles spent more than roughly 12% of total driving time 

running idle, the number for drivers is about one percentage point lower.  The 10% of vehicles with 

the highest values spent more than roughly 27% of total driving time running idle, the same number 

for drivers was about two percentage points lower. All in all, this suggests that vehicle attributes 

have a greater impact on the propensity to let the vehicle run idle than drivers' intention.  

Table 39 Descriptive statistics on running idle  

 
Pr vehicle Pr driver 

N 3308 2702 

Mean 14,0% 12,7% 

Standard error 0,1617 0,1703 

CV 1,2 1,3 

Min (P0) 1,0% 0,8% 

P10 4,4% 4,0% 

P25 7,0% 6,3% 

Median (P50) 11,7% 10,5% 

P75 18,5% 16,9% 

P90 26,7% 24,5% 

Max 66,0% 60,6% 
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Figure 18 shows a histogram for the distribution of percentage of time spent running idle for 

vehicles. The distribution is skewed to the right, some few vehicles at some days spent a very high 

percentage of their driving time running idle while most other vehicles at most other days spent  

roughly 5 to 40 percent of their driving time.  We assume that cold weather in winter is the most 

influencing factor for the relative amount of driving time spent running idle. 

Figure 18 shows the same histogram for drivers. The shape of the distribution is identical, but the 

histogram for vehicles shows some larger values on the X-axis which confirms the proposition above: 

The relative amount of  time spent running idle vary more between vehicles than between drivers. 

Figure 18 Histogram running idle pr vehicle 

 

Figure 19 Histogram running idle pr driver 
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Figure 20 shows fuel consumption vs percentage of total driving time spent running idle pr vehicle. 

Figure 21 shows the same relationship for drivers. There are no major differences between the two 

plots. 

The effect of an increased relative amount of time spent running idle is positive, statistically 

significant but weak in the figure based on drivers' data. An increase of 10 percentage points will 

increase fuel consumption by 0,09 litre pr 10 km.  A truck running 100 000 km a year would save 900 

litre fuel or about 2,4 tonnes CO2 by decreasing the amount of driving time running idle with 10 

percentage points. The variations in relative amount of time spent running idle explains only 1% of 

total variations in fuel consumption for drivers. 

The linear regression effect for vehicles is twice the size of the effect for drivers. Based on vehicle 

data, if the amount of driving time spent running idle was reduced with 10 percentage point the fuel 

consumption would be 0,18 litre lower per 10 km. The amount of time spent running idle explains 

about 4% of total variations in fuel consumption in the data material from vehicles. This again 

suggests that some vehicles are harder to start or to heat up and that this determines more of the 

time spent running idle than drivers' intentions. 

Figure 20 Fuel consumption by percentage of time running idle for vehicles 

 

Figure 21 Fuel consumption by percentage of time running idle for drivers 
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Table 40 shows the amount of time spent running idle for participants in the driving behaviour 

course. The table shows that five out of six participants have reduced the amount of time spent 

running idle. For four of them the reduction is statistically significant, which means it is larger than 

what could be expected from pure chance. The reduction is is in the range of 7,1% to 2,9% for the 

significant effects. We should mention that we have included winter months  both before and after 

the course was taken. 

Table 40 Amount of time spent running idle for participants in driving behaviour course 

Driver Before After Difference t-value 

Degrees- 
of- 
freedom p-value 

Signi-
ficance 

Fuel 
saving 

AK 17,5 18,0 0,5 0,27 88 0,7847   -0,1 

AY 10,7 7,8 -2,9 -2,49 45 0,0167       * 0,4 

BA 9,6 5,5 -4,1 -4,68 71 0,0000       * -0,4 

E 14,3 7,8 -6,5 -7,27 85 0,0000       * -0,3 

L 10,9 9,2 -1,7 -1,82 33 0,0781   -0,1 

M 17,9 10,8 -7,1 -6,67 169 0,0000       * -0,4 

 

 

Engine load of more than 90% of maximum torque 

Table 41 shows descriptive statistics for the relative amount of driving time the engine load is above 

90% of maximum torque 20  pr vehicle. On average, 12,5% of driving time was spent driving the 

vehicles with this engine load. The mean value is about the same for vehicles and drivers. Again, it 

                                                           
20

 Six observations for vehicle K are omitted from the analysis because of extreme values.  They all spent 82% 
percent or more of total driving time with 90% of maximum torque. This is more than twice the maximum 
value when these observations are discarded. All observations were made within a six day period from 8th to 
14th of March, 2011. These observations do not have extreme values on other variables such as driving 
distance and fuel consumption. 
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should be noted that the vehicles spend a lot of their time in terrain dominated by steep hill climbing 

on narrow, winding roads between western and eastern Norway.   

Table 41 Descriptive statistics on the relative amount of time the engine load is above 90% of maximum torque 

 
Pr vehicle Pr driver 

N 3302 2702 

Mean 12,5% 12,4% 

Standard error 0,1278 0,1472 

CV 1,0 1,2 

Min (P0) 0,0% 0,0% 

P10 3,3% 2,7% 

P25 7,0% 6,6% 

Median (P50) 11,8% 11,6% 

P75 17,8% 18,0% 

P90 22,7% 22,9% 

Max 40,6% 41,4% 
 

The distribution pr vehicle and pr driver are almost identical.  Thus, drivers' intention may be just as 

decisive as other factors influencing fuel consumption such as terrain, road curvature and quality and 

driving conditions. To test for that , we need to control for other factors that may be influenced by 

use of maximum torque and which also has an influence on fuel consumption. 

Figure 22 Histogram amount of driving time in % with engine load more than 90% of maximum torque pr vehicle 

 

Figure 23 Histogram amount of driving time in % with engine load more than 90% of maximum torque pr driver 
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Figure 22Figure 23 shows a histogram for percent of driving time in percent spent with an engine 

load above 90% of maximum torque per vehicle. The distribution is right skewed, some few vehicles 

spend a larger  percentage of the driving time with a high engine load. Most vehicles (80%) are in the 

interval from 4 to 25 percent of the driving time.  Figure 23 shows the same histogram for drivers.  

The differences between the two histograms are negligible. It is noteworthy that some vehicles and 

drivers do not use more than 90% of maximum torque at all on some days. This lead us the the 

proposition that the routes the vehicles are travelling may be an important factor. 

Figure 24 Fuel consumption by percentage of time spent with an engine load over 90% of maximum torque pr vehicle 

 

Figure 25 Fuel consumption by percentage of time spent with an engine load over 90% of maximum torque pr driver 



56 
 

 

Figure 24 shows the relationship between fuel consumption and the relative amount of time the 

engine load of the vehicle is above 90% of maximum torque pr vehicle. Figure 25 shows the same 

relationship for drivers. Again, the two figures are practically identical. There is, not surprising, a 

significant relationship between engine load and fuel consumption. Using drivers' data,  an increase 

of 10 percentage point in driving time with this engine load will on average increase the fuel 

consumption by 0,66 litre per 10 km. Given that the mean time spent with this engine load is less 

than 13%, an increase of 10 percentage points is a lot. Still, if a vehicle could decrease its time spent 

driving with this engine load from 20% to 10% on average, a yearly driving distance of 100 000 km 

would imply fuel savings of about 6600 litre  and a reduction in the CO2-emissions of about 17,6 

tonnes. Such a decrease in engine load is only possible with improved infrastructure. All in all, 

variations in use of  engine load above 90% of maximum torque alone explains 37% of variations in 

fuel consumption using drivers' data. Therefore, engine load is among the factors with biggest impact 

on fuel consumption. 

Table 42 Amount of time spent driving with an engine load above 90% of maximum torque for participants in driving 
behaviour course 

Driver Before After Diff t-value 

Degrees-
of-
freedom p-value 

Signifi-
cance 

Fuel 
savings 

AK 7,5 7,4 0,0 -0,03 73 0,9735 
 

-0,1 

AY 11,3 14,2 2,9 2,67 58 0,0099 * 0,4 

BA 18,1 16,6 -1,4 -0,85 68 0,3984 
 

-0,4 

E 14,4 16,9 2,5 2,15 112 0,0338 * -0,3 

M 13,4 13,2 -0,3 -0,24 164 0,8127 
 

-0,4 
 

Table 42 shows the relative amount of driving time spent driving with an engine load above 90% of 

maximum torque for participants in the driving behaviour course summer 2011. Driver L spent no 

time using more than 90% of maximum torque neither before nor after the course. We assume this is 
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because the driver only drove a specific route where torque demand is lower. This driver is not 

included in the analysis.  

Two drivers have significantly different values before and after the course, but in both cases they 

spent more time with an engine load above 90% of maximum torque after the course than before. 

This shows that other factors than drivers' intentions are decisive for the amount of driving time 

spent with a high engine load.  

 

Highest gear 

Table 43 shows descriptive statistics on relative amount of driving time per day spent driving in 

highest gear pr vehicle. On average, almost 50% of the driving time was spent driving in the highest 

gear for vehicles while the average for drivers  was slightly larger. There is a considerable variation 

among drivers since the minimum is 5,5% while the maximum is above 90% of total driving time. The 

vehicles with the lowest 10% of the values spend at most 32% of driving time in highest gear and the 

vehicles with the highest 10% of values spend at least  67% in highest gear 21. The mean and median 

is almost identical for vehicles  which suggests a symmetric distribution which  confirmed by the 

histogram in Figure 26 for vehicles.   

Table 43 Descriptive statistics on relative amount of driving time spent driving in highest gear 

 

Pr vehicle Pr driver 

N 3308 2702 

Mean 49,5% 51,4% 

Standard error 0,2343 0,2726 

CV 0,5 0,5 

Min (P0) 5,5% 5,5% 

P10 32,3% 33,7% 

P25 40,4% 41,5% 

Median (P50) 49,6% 50,7% 

P75 58,7% 61,1% 

P90 66,6% 71,5% 

Max 86,9% 90,1% 
 

Table 43 also shows data pr driver and not pr vehicle. It seems that the distribution pr driver is a bit 

different from vehicles in the sense that the drivers' distribution has a higher use of the highest gear 

for the same percentile. For example, the lowest 10% of drivers use the highest gear in at most 34% 

of total driving time while the same value for vehicles is roughly 32%. Also, the highest 10% of values 

from the driver table use the highest gear at least 71,5% of the driving time while the corresponding 

number from the vehicle table is 66,6%. This may be an indicator that drivers' intention more than 

vehicle attributes  determine the choice of highest gear. Variation among drivers in use of the highest 

gear is larger than what could be expected from vehicles alone. 

                                                           
21

 These are roughly P10 and P90 values 
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Figure 26 Histogram of amount of time spent using highest gear pr vehicle 

 

Figure 27 Histogram of amount of time spent using highest gear pr driver  

 

Figure 26Figure 27 shows the histogram for amount of time spent in highest gear for vehicles. Figure 

27 shows the same histogram for drivers.  There is no discernible differences between the two 

histograms. 

Figure 28 shows the relationship between  fuel consumption and the relative amount of time spent 

driving in highest gear per vehicle. Figure 29 shows the same relationship per driver. The figures are 

practically identical. 

 Figure 28 Fuel consumption by percentage of time spent in highest gear per vehicle 
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Figure 29  Fuel consumption by percentage of time spent in highest gear per driver 

 

Both figures show the same trend, the longer time spent driving in highest gear, the lower is the fuel 

consumption. The effect of one extra percentage point of total driving time spent in highest gear is 

largest when that relative driving time in highest gear is low.  The trucks use the lowest gears while 

climbing steep hills, therefore the engine load is high in lower gears.  On the contrary, in the highest 

gear, the engine works with less load and therefore the fuel consumption pr distance will be lower. 

The effect of relative amount of time spent driving in highest gear on fuel consumption is significant, 

and the mean elasticity for the regression coefficient suggests that a ten percent increase in the 
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relative amount of time spent driving in highest gear will reduce the fuel consumption by 1,2 percent 
22. 

We have used an inverse regression line in the figure above since the figure suggests that the effect 

of increasing the time driving in highest gear is largest when that relative time amount is low to start 

with. The more of the time already spent driving in the highest  gear, the less is the effect of an 

additional amount of time spent driving in that gear. This effect is captured by the inverse regression 

line and is reported  in Table 44 which is based on drivers' data.   

Table 44 Effect on fuel consumption by increasing the relative amount of time spent in highest gear 

Relative amount of 
time spent driving 

in highest gear 

Average fuel 
consumption 

litre per 10 km 

Effect of 
increasing 

driving time 
with 10 

percentage 
point 

Effect of 
increasing 

driving time 
relative to 10 

percentage 
point in highest 

gear 

10 % 8,3 0 0 

20 % 5,9 -2,4 -2,4 

30 % 5,1 -0,8 -3,1 

40 % 4,7 -0,4 -3,5 

50 % 4,5 -0,2 -3,8 

60 % 4,3 -0,2 -3,9 

70 % 4,2 -0,1 -4,0 

80 % 4,1 -0,1 -4,1 

 

The table shows the expected fuel consumption for different amounts of relative time spent driving 

in highest gear. The effect of increasing this relative time from 10 to 20 percent is 12 times higher 

higher than increasing it from 50 to 60 percent. Therefore, when a relative small amount of driving 

time is spent in highest gear, increasing this amount will have the largest effect. Again, this is the 

bivariate total effect of driving in highest gear. It may be that the direct independent effect from the 

multivariate regression model is smaller after controlling for indirect and spurious effects. 

Table 45 Amount of time spent driving in highest gear for participants in driving behaviour course 

 
Before After Diff t 

Degrees-
of-

freedom p-values 
Signifi-
cance 

Fuel 
saving 

AK 37,6 40,8 3,2 1,30 82 0,1972 
 

-0,1 

AY 52,3 47,9 -4,4 -1,11 58 0,2705 
 

0,4 

BA 58,7 62,4 3,7 1,77 72 0,0804 
 

-0,4 

E 50,3 54,9 4,6 2,97 109 0,0036 * -0,3 

L 43,8 48,5 4,7 0,90 24 0,3778 
 

-0,1 

M 48,9 51,7 2,9 1,84 168 0,0682 
 

-0,4 

                                                           
22

 Note that with elasticities, we assess the increase in percent rather than percentage points and the effect is 
in percent change in fuel consumption per 10 km rather than in litre per 10 km. 
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Table 45 shows the difference in use of highest gear for participants in the driving behaviour course 

summer 2011.  Most participants have increased the relative amount of time spent driving in highest 

gear, but we find a statistically significant effect for only one participant. The other differences are no 

larger than what can be expected from pure chance alone. The participant with the significant effect 

has an increase of 4,6 percentage points in the amount of driving time spent in highest gear, a very 

substantial increase given that the mean value is about 50%. 

 

Rolling without engine load 

Table 46 shows descriptive statistics for amount of driving time in percent spent rolling without any 

engine load. The table show data distribution pr vehicle and pr driver. The mean is 9,8% of driving 

time  pr  vehicle while the mean pr driver is slightly lower. The maximum amount of time spent 

rolling was almost 29,5%  for the distribution per vehicle while its is practically the same per driver.  

The variation in Table 46 suggests that there may be a potential for increasing the amount of driving 

time spent rolling without engine load, given that each truck each day have the same probability of 

using the same terrain and the same route with the same cargo. The lowest 10% of vehicles spend 

2,9% of driving time rolling without engine load while the highest 10% of observations spend 17%.  

The values are about the same for drivers. Half of all vehicles and drivers each day spent more than 

roughly  9% of driving time without any engine load at all. 

Table 46 Amount of driving time spent rolling without engine load 

 
Pr vehicle Pr driver 

N 3308 2702 

Mean 9,8% 9,2% 

Standard error 0,0949 0,0949 

CV 1,0 1,0 

Min (P0) 0,3% 0,3% 

P10 2,9% 2,8% 

P25 6,2% 5,8% 

Median (P50) 9,2% 8,8% 

P75 13,2% 12,6% 

P90 17,0% 15,9% 

Max 29,5% 29,1% 
 

The percentiles suggest a skewed distribution since the distance from maximum to mean is larger 

than the distance from minimum to mean. This is confirmed by the histogram in Figure 28. There are 

some vehicles some days that spend a high amount of driving time rolling without engine load. The 

histogram also shows that the distribution has two peaks, there is one peak for very low amount of 

driving time spent rolling and one peak for the mean and median value of about 8-9% of driving time. 

This again may indicate that there is a potential for more rolling without using engine load.  Figure 29 

shows the same histogram for drivers. As already mentioned, the distributions are practically 

identical. 
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Figure 30 Histogram amount of driving time spent rolling without engine load pr vehicle 

 

Figure 31  Histogram amount of driving time spent rolling without engine load pr driver 

 

 

Figure 32 shows the relationship between amount of time spent rolling without engine load and fuel 

consumption pr 10 km per vehicle. Figure 33 shows the same relationship pr driver. The two figures 

basically show the same relationship. Based on vehicle data, the effect is slightly negative, if the 

amount of driving time spent rolling without an engine load is increased by 10 percentage points the 

fuel consumption will decrease by 0,062 litre. The effect is significant. Using drivers' data, the effect 

is the opposite, a similar increase will increase fuel consumption by 0,8 litre. This effect is also 

significant. In both models, the amount of variations in fuel consumption explained by rolling without 

engine load (R2) is about zero. When we have as many data observations as we have both for vehicles 

and drivers, almost any effect is statistically significant even if the model explains nothing of 

variations in fuel consumption.  Rolling without engine load also varies with the average speed since 
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speed is required for rolling to take place. Rolling takes place downhill so the speed is obtained by 

going uphill with low average speed. The explanation for the low effect of rolling on fuel 

consumption may be that the amount of fuel saved rolling downhill is balanced by the increase in 

fuel consumption going uphill measured on a daily basis.  

Figure 32 Amount of time spent rolling without engine load vs fuel consumption per vehicle 

 

Figure 33 Amount of time spent rolling without engine load vs fuel consumption per driver 

 

Table 47 shows the change in amount of driving time spent rolling without engine load for 

participants in the driving behaviour course. Five out of six drivers spend a significantly higher 

amount of time rolling without engine load after participating in the course.   
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Table 47 Amount of time spent rolling without engine load for participants in driving behaviour course 

 
Before After Difference t-values 

Degrees 
of 
freedom p-values 

Signifi-
cance 

Fuel 
saving 

AK 7,3 8,2 0,9 2,00 87 0,0483 * -0,1 

AY 10,7 14,4 3,7 4,37 66 0,0000 * 0,4 

BA 11,5 13,3 1,8 2,54 68 0,0133 * -0,4 

E 6,4 10,3 3,9 5,83 122 0,0000 * -0,3 

L 6,6 7,3 0,7 1,25 21 0,2243 
 

-0,1 

M 7,1 8,9 1,8 7,69 133 0,0000 * -0,4 

 

 

Weight distribution 

Dynafleet also registers how much of the driving time that is spent with different weight loads. There 

are three loads, low, medium and high. A low weight is defined as weight of vehicle plus freight load 

up until 13 tonnes. A medium weight is between 13 and 28 tonnes and a high weight load is a weight 

of vehicle and freight load of more than 28 tonnes. We will look at the amount of time spent driving 

with high weight load. The first observations of weight loads were registered in Dynafleet at March 

10th 2011, so there are considerably fewer observations among vehicles for  this distribution.  

Table 48 Descriptive statistics for amount of time in percent spent driving with a weight load of more than 28 tonnes 

 
Pr vehicle Pr driver 

N 2267 2507 

Mean 64,3% 60,6% 

Standard error 0,7829 0,7757 

CV 1,2 1,3 

Min (P0) 0,0% 0,0% 

P10 0,6% 0,0% 

P25 32,7% 18,6% 

Median (P50) 80,3% 76,5% 

P75 97,2% 97,0% 

P90 100,0% 100,0% 

Max 100,0% 100,0% 
 

Table 48 shows descriptive statistics for relative amount of time spent driving with a high weight load 

of more than 28 tonnes (including the vehicle). Since minimum is 0% and maximum is 100% there is a 

considerable variation. On average, 64,3% of driving time for vehicles is spent with a high weight load 

while the same number for drivers is 3,7 percentage point lower . The median suggests that half of all 

vehicles at any day spend more than 80% of driving time with a high weight load. For drivers, the 

median is nearly 4 percentage points lower than for vehicles. 
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There are some striking differences between drivers and vehicles. If we look at the lower quartile 

(the value which cuts off the lower 25% of the distribution) we see that the proportion which drives 

with a high weight load is about 1,8 times higher for vehicles than for drivers. It is hard to interpret 

these differences since drivers do not choose the weight load, it is rather an effect of the market 

situation.  

Figure 34 Histogram amount of driving time spent with high weight load pr vehicle 

 

The histograms in Figure 34 and Figure 1 Figure 35 show that the distributions both for vehicles and 

drivers are heavily skewed to the right The upper quartile (P75 value) suggests that the 25% of all 

vehicles and drivers with the highest values spend more than  97% of their driving time with a high 

weight load.   

Figure 35 Histogram amount of driving time spent with high weight load pr driver 
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Figure 37 shows the relationship between driving time spent with a high weight load and fuel 

consumption per 10 km per vehicle. The linear effect of weight load on fuel consumption is obvious 

and significant - the more weight the higher consumption.  

Figure 36 Amount of time spent driving with a high weight load vs fuel consumption per 10 km per vehicle 

 

Figure 37 Amount of time spent driving with a high weight load vs fuel consumption per 10 km per driver 

 

 

Figure 37 shows the same relationship for drivers. The linear trend is almost exactly the same but the 

variation around the regression line is slightly smaller for drivers since  weight load explains 57% of 

the variation in fuel consumption for vehicles and 60% for drivers. 
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The magnitude of the effect may be smaller than expected. The estimated linear regression line from 

the drivers' data suggests that an increase of 10 percentage points in driving time with high weight 

load increases the fuel consumption by 0,16 litre per 10 km.  A driver driving 100 000 km a year will 

increase the fuel consumption by 1600 litre diesel if the amount of driving time spent with a high 

weight load increases by 10 percentage points. This implies an increase in emission of CO2 by almost 

4,3 tonnes.  

Analysis presented earlier indicate that increased fuel consumption as a result of increasing weight 

load can easily  be offset by increased use of cruise control, more time spent driving in high gear, 

more use of automatic gear shift, higher average speed, more rolling without engine load and less 

amount of time driving with a high engine load.  More optimal driving behaviour and better 

infrastructure would seem a reasonable price to pay in order for society to transport more goods per 

vehicle without increasing energy consumption or CO2-emissions. 

Weight load check 

We have obtained data from the freight company which show the weight each vehicle transports on  

a specific task assigned to the vehicle on a specific date. A task, such as transporting goods from the 

factory in Sogndal to a shop in Oslo, can last several days if the destination is far away in Sweden or if 

the vehicle has to make a detour in winter because mountain passes are closed. Our analysis so far 

uses data registered on a vehicle or a driver per day. Since tasks and days are not directly 

comparable, analyzing fuel consumption and weight distribution pr task is a useful check on our 

analysis per day. In Dynafleet, information about driving behaviour and the amount of time spent 

driving with a high weight load is only available on a daily basis. 

The data from the freight company shows information about the task, the vehicle assigned to the 

task, where the recipient of the transport is located and how much weight is assigned to the task. By 

matching with vehicle data in  tracking reports from Dynafleet we can obtain information about 

distance travelled and fuel consumed for completing the specific task. All in all, the data obtained 

from the freight company covers 88 different tasks all in December 2011. It should be noted that 

December is a month with very varying driving and weather conditions. Some of the spread in fuel 

consumption is therefore attributable to conditions that we cannot control for since we do not know 

the exact driving condition on each route that was used in order to complete the tasks. Appendix B 

list all data items used in this weight analysis. 

Every  transport task is a delivery of freight from Lerum Fabrikker to a customer. Every transport task 

starts at the freight company address in Kaupanger, Western Norway. The freight company is 

situated next to Sognefjorden, the second longest fjord in the world. The freight company is 

therefore located at approximately sea level. In order to travel to Eastern Norway and Southern 

Norway the vehicles have to pass one mountain pass, usually Hemsedalsfjellet, with a peak altitude 

of 1100 meter. To travel to Trøndelag in summer the vehicles  have to pass two mountain passes, 

Sognefjellet (1400 meter above sea level) and Dovrefjell (1100 ). In winter the vehicles pass 

Innvikfjellet (630) and Strynefjellet (943) before passing Dovrefjell in order to get to Trøndelag. The 

vehicles climb Utvikfjell, Strynefjell, Hemsedalsfjell and Sognefjell mountain passes from sea level. To 

travel to Møre og Romsdal (also in Western Norway) the vehicles travel narrow, winding roads but 

no mountain passes. 
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In Dynafleet, the weight indicator is not weight directly but rather how much of the driving time in 

percent that was spent with a weight load above 28 tonnes including the vehicle’s own weight. A 

vehicle with trailer can weigh up to 15-20 tonnes. A fully loaded vehicle has about 30 tonnes of 

freight.  If the vehicle weighs i.e. 15 tonnes it does not take more than 13 tonnes of freight weight for 

that vehicle to be counted as driving with a high weight load in the Dynafleet system. Therefore, the 

category high weight load in Dynafleet is not precise and do not discriminate enough between 

vehicles with different freight loads.  

This analysis of freight data was therefore carried out as a check of the weight effect found in data 

from Dynafleet. Figure 38 shows freight weight and fuel consumption for the 88 tasks completed in 

December 2011. Each vehicle is identified with a letter code and with a number identifying the 

registration for that vehicle. So G_4 means the fourth registration for vehicle G. The colour codes are 

different geographical freight destinations. We differ between Eastern Norway, Southern Norway, 

Trøndelag, Western Norway and Møre og Romsdal.  Figure 39 shows the colour codes used in Figure 

38. 

Figure 38 Freight weight vs fuel consumption 

 

There is clear linear trend in Figure 38. The more freight weight, the more fuel consumption, as 

expected. Freight weight alone explain about 26% of variations in fuel consumption. For each extra 

tonne of freight carried the fuel consumption increases on average by 0,056 litre. Therefore,  if the 

freight load increases with 10 tonnes the expected increase in fuel consumption is about 0,56 litre 

per 10 km. 

It is difficult to detect a pattern for the colour codes used in the figure. The colour codes seem to be 

scattered randomly round the regression line. For height freight loads though the yellow points seem 

to be concentrated well above the predicted regression line. It may be that the rather poor 

infrastructure from Kaupanger  to Møre og Romsdal with narrow winding roads increases fuel 

consumption compared to other destinations with better infrastructure. It could also be that the 

weather and driving conditions in these part of Norway in December is more demanding than 
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weather conditions in Eastern and Southern Norway. There is much more precipitation and wind in 

Western Norway (including Møre og Romsdal) in December than in eastern and southern parts of 

Norway.  

Figure 39 Colour code for freight deliveries 

 

We performed an analysis of variance for differences in fuel consumption for different routes. Table 

49 shows the result of the model estimation.  The routes are categorized using the colour codes in 

Figure 39. The analysis was performed using a regression model with weight data and a dummy for 

each destination except Western Norway. The effect of the last category was measured by the 

constant term. By including the freight weight load in the analysis we compare vehicles travelling to 

different destinations with the same freight weight. In this manner we can isolate the differences 

between destinations from differences in freight load. The destinations are defined by the location of 

the first delivery for the freight transport. 

Table 49 Regression analysis of freight weight and destination of first freight delivery  

  
Regression- 
coefficients 

Standard 
error t-Stat P-value 

Constant term 4,06408753 0,26575415 15,2926588 9,862E-26 

Freight weight 0,06635472 0,00998984 6,64221784 3,1405E-09 

Eastern Norway -0,14289347 0,11813569 -1,20957073 0,22991937 

Møre og Romsdal 0,33708988 0,20293741 1,66105345 0,1005218 

Trøndelag -0,4320809 0,19480094 -2,21806371 0,02931591 

Southern Norway  -0,50223128 0,17886169 -2,80793095 0,00622952 
 

When we include destination in the analysis the effect of a 10 tonne increase  in freight weight 

increases from 0,56 litre per 10 km in the bivariate case cited above to 0,66 litre per 10 km. 

The analysis shows that a vehicle travelling in Western Norway with a freight weight of 28 tonnes has 

an expected fuel consumption of 5,9 litre per 10 km. If the same vehicle with the same freight load  

travelled to Southern Norway the expected fuel consumption would be 0,5 litre lower pr 10 km. If 

the vehicle travelled to Trøndelag the fuel consumption would be 0,43 litre lower per 10 km. These 

effects are statistically  significant. If the vehicle travelled to Eastern Norway the fuel consumption 
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would be 0,14 litre per 10 km lower, but this effect is not statistically significant. On the other hand, 

if the vehicle travelled to Møre and Romsdal the expected fuel consumption would be 0,33 litre 

higher per 10 km, but this effect is also not statistically significant. It may that non-significant effects 

would be significant if we could collect more data for this analysis. The regression model explained 

39% of the variation in fuel consumption. 

 

Brake counter 

Table 50 shows descriptive statistics for number of times the brakes have been applied per 100 km 

for both vehicles and drivers. Each time the brakes are applied, the Dynafleet computer register it. At 

the end of the day, the number of times the brakes have been applied is divided by distance travelled 

in 100 km. 

Table 50 Descriptive statistics for brake counter per 100 km 

 

Pr vehicle Pr driver 

N 3308 2702 

Mean 72,2 76,3 

Standard error 0,5999 0,8912 

CV 0,8 1,2 

Min (P0) 0 0 

P10 32 30 

P25 48 47 

Median (P50) 69,5 69 

P75 92 94 

P90 117 128 

Max 281 392 
 

Breaks are always applied by drivers, but since many vehicles are driven by several drivers the effects 

of drivers can be modified by the vehicles they drive. If vehicles data show less difference than 

drivers data it is reason to believe that vehicle properties cancel out driving behaviour, while if the 

opposite is the case it may be that some vehicles' attributes make it more difficult to reduce brake 

application. 

On average, the brakes are applied 72 times per 100 km for vehicles and 76 for drivers (rounded 

numbers). The maximum is 281 number of times for a vehicle. The P90 value tells us that the 10% of 

vehicles with the highest values have applied the brakes more than 117 times per 100 km while the 

P10 value tells us that the 10% of observations with the lowest values have applied the brakes less 

than or equal to 32 times per 100 km. The median (69,5 times) is less than the mean (72) which 

suggests that he distribution is skewed to the right. Some vehicles at some days use the brakes a lot 

while most trucks at most days have a much lower application of brakes per 100 km. 

The distribution for drivers are almost identical, except for the P90 and the maximum value. The 

maximum value is much higher for drivers than for vehicles. This may suggest that driving behaviour 
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vary more than variations in vehicle attributes should indicate and that this behaviour is the key 

factor for reducing brake applications and obtain a smoother driving pattern. In other words, the 

potential for reduction of brake applications is more dependant on driving behaviour than on 

vehicles' attributes. 

Table 51 Histogram brake counter per 100 km per vehicle 

 

The histogram of the distribution for vehicles confirm that some vehicles at some few days use the 

brakes vary much compared to most other vehicles most other days. This is probably due to driving 

conditions on these days, especially in winter months. 

Figure 40 shows the same histogram for drivers. The figure shows that this distribution is even more 

right-skewed and less symmetrical which, as discussed, suggests that driving behaviour probably play 

a role in determining the amount of times brakes are applied per 100 km. 
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Figure 40 Histogram brake counter per 100 km per driver 

 

Figure 41  shows the relationship between brake application per 100 km and fuel consumption in 

litre per 10 km per vehicle. Figure 42 shows the same relationship for drivers.  There is a positive 

significant linear trend for vehicles but not for drivers. For vehicles, if brakes are applied 100 times 

more per 100 km  the expected increase in fuel consumption is 0,43 litre per 10 km. The model for 

vehicles explains only 3% percent of total fuel variations. The reason we don't find any significant 

effect for drivers is probably because some drivers some days have more extreme values for 

application of brakes. 

 Figure 41 Brake application per 100 km vs fuel consumption per 10 km per vehicle 
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Figure 42 Brake application per 100 km vs fuel consumption per 10 km per driver 

 

Table 52 Number of time brakes are applied for participants in driving behaviour course 

 
Before After Difference t-values 

Degrees- 
of- 
freedom p-values 

Signifi-
cance 

Fuel 
saving 

AK 80,4 87,4 7,0 1,24 86 0,2171   -0,1 

AY 50,3 70,1 19,9 3,21 75 0,0020       * 0,4 

BA 26,0 24,2 -1,8 -0,47 71 0,6364   -0,4 

E 61,7 68,7 7,0 1,69 113 0,0937   -0,3 

L 116,4 80,0 -36,4 -3,00 17 0,0081       * -0,1 

M 80,8 77,9 -2,9 -0,64 148 0,5246   -0,4 

 

Table 52 shows the distribution for number of brake applications per 100 km for participants in the 

driving behaviour course summer 2011. The table shows that after the course, one participant 

increased  the use of brake applications per 100 km significantly while one driver significantly 

reduced it.  It may be an indication that driving conditions and weather are more important factors 

for application of brakes than driving behaviour. On the other hand the variation among drivers is 

large. Also, the driver that reduced the application of brakes had the highest value before the driving 

course took place. 

 

Stop counter 

Dynafleet also registers how often the vehicle has stopped per 100 km. Table 53 shows the 

distribution for  number of stops per 100 km for vehicles and drivers. As for the brake counter, the 
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maximum and 90 percentile values are higher for drivers than for vehicles but the differences are 

very small. 

Table 53 Descriptive statistics for number of stops per 100 km 

 
Pr vehicle Pr driver 

N 3308 2702 

Mean 10,2 11,0 

Standard error 0,1087 0,1550 

CV 1,1 1,4 

Min (P0) 1 1 

P10 4 4 

P25 6 6 

Median (P50) 9 9 

P75 13 13 

P90 18 20 

Max 60 62 
 

Table 53 shows that vehicles on average stop about 10 times per 100 km while the corresponding 

number from the drivers' data is roughly  one more stop per 100 km. The maximum value for 

vehicles is 60 and the top 10% of the distribution have more than 18 stops per 100 km.   

Figure 43 Histogram number of stops per 100 km per vehicle 

 

 

Looking at drivers' data, the 10% of them with the highest number of stops have more than 20 

number of stops per 100 km.  The upper quartile shows that 25% of all vehicles and drivers stop 

more than 13 times per 100 km  while the lower quartile  shows that the lowest  25% of both vehicles 

and drivers have 6 or less stops per 100 km. The median is slightly lower than the mean  which 
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suggests a right-skewed distribution, some few vehicles stop a lot on some few days.  This is 

confirmed by the histogram in Figure 43 which shows the vehicles' distribution.   

 Figure 44 shows the same histogram for drivers. The figure shows that the distribution is right 

skewed as already discussed. The figure also shows  one striking peak around 8 stops which is not 

present in the vehicles' distribution. We interpret this discrepancy between the two distributions as 

an indication that driving behaviour have an impact on number of stops per 100 km. 

Figure 44 Histogram number of stops per 100 km per driver 

 

Figure 45 Number of stops per 100 km vs fuel consumption per 10 km per vehicle 

 

Figure 45  shows number of stops per 100 km vs fuel consumption per 10 km per vehicle. Number of 

stops by itself explains practically nothing of the variation in fuel consumption. 
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Figure 46 Number of stops per 100 km vs fuel consumption per 10 km per driver 

 

Figure 46 shows the same figure for drivers. The most interesting feature is that the sign of the 

regression coefficient changes from vehicles' data to drivers' data.  Among vehicles, an increase in 

number of stops increase fuel consumption while for the drivers the effect is the opposite. This 

seems to be a result of a few drivers which have a large number of stops relative to other drivers.  

That feature is not so striking among vehicles. Again, it may indicate the impact of driving behaviour. 

As for vehicles, number of stops alone explains practically nothing of the variation in fuel  

consumption between drivers. The regression effect itself is still significant, but this rather reflects a 

large number of observations than a substantial explanation of fuel consumption.  The effect is weak, 

10 less stops per 10 km will reduce the fuel consumption about 0,08 litre per 10 km for drivers. 

Table 54 Number of stops for participants in driving behaviour course 

 
Before After Difference t-values 

Degrees- 
of- 
freedom p-values 

Signifi-
cance 

Fuel 
saving 

AK 8,1 8,8 0,7 0,62 87 0,5353   -0,1 

AY 7,1 9,5 2,4 1,72 76 0,0898   0,4 

BA 11,1 12,0 0,9 0,50 71 0,6155   -0,4 

E 9,9 10,0 0,1 0,08 108 0,9351   -0,3 

L 9,5 8,2 -1,2 -0,62 19 0,5415   -0,1 

M 9,4 11,1 1,8 2,09 148 0,0383       * -0,4 

 

Table 52 shows the distribution for number of stops  per 100 km for participants in the driving 

behaviour course summer 2011.  There is only one significant effect and that driver has increased 

number of stops.  While driving behaviour may influence number of stops, it could also be that 
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driving conditions and route attributes are having an even  greater impact. We have no data to back 

up further speculations on this point. 

 

Multivariate regression analysis 
Finally, we can perform a multivariate regression analysis. We will use drivers' data to estimate the 

multivariate regression model. The units for the analysis are daily trips made from January 2011 to 

January 2012. 

The dependent variable in the model is fuel consumption in litre per 10 km per day. The drivers' data 

and vehicles' data are joined by assuming that trips made on the same day, with the same time span,  

with the same distance travelled and with the same fuel consumption is the same trip in the two 

tables for drivers and vehicles. Consequently, when these criteria are satisfied, we know which 

vehicle was driven by which driver on that day. We need to couple drivers and vehicles since some 

independent variables measure vehicles' attributes while most independent variables are related to 

drivers. 

We will use the independent variables discussed in the bivariate models or scatterplots above. We 

exclude number of stops per 100 km since it is correlated with number of brake applications per 100 

km 23. When number of brake applications and number of stops per 100 km are both included it is 

hard to separate the effect of one from the other since they are highly correlated. They both 

measure the same driving behaviour, therefore we use only one of them in the analysis. 

In addition to the variables discussed above we  introduce three additional independent variables. 

These are two dummy variables for two of the three engine types included in the model and a 

dummy-variable for winter months. The purpose of the winter dummy-variable is to control for 

different driving conditions in different parts of the year.  Each daily trip is identified by a date and 

the dummy is set to 1 for days in December, January, February and March. 

The vehicles included in the analysis are either 2010 models or 2011 models. We assume that models 

made in 2010 and 2010 do not differ much from each other in terms of engines and energy-efficient 

solutions. Consequently, we have not included model year as an independent variable. 

The engine type also indicate the number of horsepower for that vehicle. Three engine types are 

included in the estimation of the multivariate regression model, these are 

 D13C500, 

 D13C540, 

 D16G700. 

We will use two dummy-variables for the last two engine types. A dummy variable has only two 

values, one if the vehicle in question is of the relevant engine type and zero if it is not. The effect of 

the first engine type is measured by the constant term. The last three digit in the engine type is the 

number of horsepower for each engine type.   The effect of the dummy variable for engine type 

                                                           
23

 The linear correlation coefficient between number of stops and number of brake applications per 100 km is 
0,64 for the data material applied in the analysis. 
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D13C540 therefore measures the difference in mean fuel consumption  between a vehicle with 500 

horsepower and a vehicle with 540 horsepower, assuming values for all other independent variables 

are held constant. And, of course, the effect of the dummy for engine type D16G700 measures the 

difference in mean fuel consumption between  vehicles with 500 horsepower and vehicles with 700 

horsepower, again under the assumption of constant values for all other independent variables. 

We also control for whether the vehicle is a semi-trailer or a vehicle with a separate trailer.   A 

semitrailer has 16 wheels that have a width of 385 mm, a height that is 55% of that width and where 

the rim has a diameter of 22,5 inches.  A vehicle with a trailer has 22 wheels and the wheels have a 

width of 265 mm, the height is 65% of that width and the rim diameter is 19,5 inches. It may be that 

different number and types of wheels will give different rolling drag or rolling resistance which again 

will have an impact on fuel consumption. A semitrailer dummy will control for this. 

The independent variables in the multivariate regression model are : 

 average driving speed  (idle running excepted), 

 relative amount of driving time per day the vehicle is running idle, 

 relative amount of driving time per day the vehicle uses cruise control, 

 relative amount of driving time per day the vehicle is driven by automatic gear shift, 

 relative amount of driving time per day the vehicle is driven with an engine load above 90% 

of maximum torque, 

 relative amount of driving time per day the vehicle is driven with the highest gear shift, 

 relative amount of driving time per day the vehicle rolls without using engine power, 

 relative amount of driving time per day spent driving with high weight load, 

 number of  brake applications per 100 km per day, 

 a dummy variable for engine type D13C540, 

 a dummy variable for engine type D16G700, 

 winter months (1 for December, January, February and March, 0 for every other month) 

 a dummy for semitrailer (1 for semitrailer, 0 for vehicles with separate trailers). 

The point of the multivariate regression analysis is to determine the independent, separate effect of 

each single independent variable. When several variables vary concurrently and when there is a 

relationship between them and fuel consumption, it will be difficult to assess the independent effect 

of one of them only by looking at its bivariate relationship with fuel consumption. This is simply 

because it is hard to say that any effect we find really comes from one specific variable when the 

others are varying at the same time. Average speed, for instance, vary in much the same way as 

driving in high gear or driving with a high engine load. If they all vary much the same way, how do we 

know what is the real effect of just one of them on fuel consumption? 

This is the problem of estimating direct and indirect effects. The bivariate effects we have found 

above is the total effect of each independent variable. This total effect includes the direct effect on 

fuel consumption and the indirect effects that go through other independent variables. If average 

speed has an effect of the amount of time driven in highest gear there are two effects of average 

speed on fuel consumption, one direct and that is mediated through the independent variable 

driving in highest gear. If there were only these two effects from average speed the bivariate effect 

would be equal to the sum of them. In reality there will be many other indirect effects on fuel 
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consumption from average speed. We do not know each of them but we will estimate the direct 

effect of average speed in this section. We also know the bivariate effect of average driving speed 

from the discussion above. Therefore, even if we do not know the specification of each indirect 

effect, we knot the sum of these indirect effects since this sum is the difference between the 

bivariate effect and the direct one. 

For the independent variables that mediate indirect effects of other independent variables, the 

difference between the bivariate and direct effect are not indirect effects but spurious effects. In the 

bivariate case, these independent variables will be assigned an effect that is too high since some of 

that total effect really is the effect of some other independent variables that the mediating 

independent variable is partly an effect of. 

To sum up: An indirect effect is an effect of one independent variable on the dependent one through 

an intermediate variable. A spurious effect is an effect of one independent variable on the 

dependent one that is actually an intermediate effect of another independent variable.   

To correct for this we apply a multivariate regression model where we introduce all the independent 

variables in one single model. In a multivariate model we control for the effect of other independent 

variables. Controlling means letting only one independent variable vary while assuming that the 

value of the others are constant. With such a model, we can answer questions like: What is the 

isolated, controlled effect of using more automatic gear shifts when all other independent variables 

are assumed to be constant? What is the difference between two vehicles  where one uses cruise 

control and the other does not  when they have the same values on all other independent variables?  

Let us illustrate what we mean by direct, indirect and total bivariate effects by using a hypothetic 

causal model with three of the independent variables from the multivariate model. Figure 47 shows 

the model. We assume that average speed influence the potential for use of cruise control and 

automatic gear shift. Therefore, these independent variables, cruise control and time spent driving in 

highest gear, are intermediate variables between average speed and fuel consumption which is 

dependent variable in the model. 

Figure 47 Hypothetic causal model 
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We also assume that cruise control influence the potential for use of automatic gear shift. The more 

use of cruise control, the more even speed which will allow for more use of automatic gear shift. 

Time spent driving in highest gear therefore is a intermediary variable between cruise control and 

fuel consumption. For the two independent variables use of cruise control and driving in highest gear 

the effect from average speed is a spurious one. If average speed was not included in the model, we 

would assign effects to the other two independent variables that really would be an effect of average 

speed. This would have been a spurious, uncontrolled effect. In the bivariate models where fuel 

consumption is only related to one independent variable, say use of cruise control, the effect of 

cruise control will be too high since we do not control for spurious effects, effects that have an 

impact on both use of cruise control and fuel consumption. 

Table 55 Total effect of independent variable average speed 

Effect  Value  

Direct  a  

Indirect  b*c  

Indirect  d*e  

Indirect  d*f*c  

    

Total  a+(b*c)+(d*e)+(d*f*c)  

 

Table 55 shows the total effect of independent variable average speed if we assume the causal 

model in Figure 47 is a correct representation of reality. We can see from the table that there are 

three indirect effects from average speed. One goes through cruise control, one goes through 

automatic gear shift and one goes through both. Since changes in average speed will cause changes 

in use of cruise control and time spent driving in highest gear, part of the effects going through these 

last two independent variables will have their origin in average speed. 

We have not formulated a total causal model where all indirect and spurious effects are specified. In 

our  context it is sufficient to know that the difference between the total and direct effect of say 

average speed is the sum of all the indirect effects.  

What effect is the most interesting one, the total effect or the direct one? When say average speed 

changes, so do a lot of other indicators too. The most reasonable effect could therefore be said to be 

the total one. When we interpret the direct effect of average speed we assume constant values for 

all other independent variables. We might say then that if average speed is changing by one km per 

hour, fuel consumption changes by y amount assuming all other independent variables are constant. 

But this assumption is really an unrealistic one. It is difficult, if not impossible, to change only average 

speed without changing the values of many other independent variables. Consequently, the direct 

effect is useful mostly for estimating the relative effect of each independent variable in order to 

determine their causal contribution. If, on the other hand, the purpose is to give a realistic picture of 

what an increase in average speed may mean for fuel consumption, the bivariate effect may be the 

better choice.  

The independent variables have different measurement units which makes it difficult to assess which 

of them has the highest effect.   Using elasticities will enable us to compare the effects with each 
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other since elasticity are unit free, they measure the percentwise effect of one percentage change in 

the independent variable on the dependent.  Equation 16 shows the formula for calculating 

elasticity. In the equation, bi is the regression coefficient for the i'th independent variable,      is the 

mean for the same i'th independent variable,    is mean for the dependent variable, fuel 

consumption, and Ei is the elasticity for the i'th independent variable. 

Equation 16 Calculation of elasticity in a multivariate regression model 

      
  

 
 

Any elasticity must be calculated at a specific point for the independent and dependent variable. For 

all elasticities, we use mean values for the independent and dependent variable as the point where 

the percentwise effect on the dependent variable from one percent increase in the independent is 

measured. 

In the multivariate model, the effects of all independent variables are assumed to be linear except  

for average speed and relative amount of time spent driving in highest gear. These two independent 

variables are assumed to have an inverse effect on fuel consumption. This is the functional form or 

trend we found when interpreting the effect of these variables in the bivariate case. This trend is 

captured by taking 1 over the independent variable and include it in the model. The inverse effect is 

asymptotically decreasing, the effect of an increase in the independent variable  is larger when the 

value of that independent variable is small. For all other variables, we use linear effects which means 

the effect of an increase in the independent variable is the same regardless of the level of that 

independent variable. 

There are three possible weight variables in Dynafleet. There is one variable for the amount of time 

driving with a weight load less than 13 tonnes, one for the amount of time driving with a weight load 

between 13 and 28 tonnes and one variable for amount of driving time with a weight load of more 

than 28 tonnes. If we know the values of two of the variables the value of the third is given as a 

residue of the others.  Therefore,  If we include all three variables in the model we will have a high 

degree of correlation between them. This is not a desired property 24. We have solved this by only 

entering one variable, the amount of time spent driving with a high weight load. These weights 

include vehicle's own weight.  Above, in the section Weight load check, we discussed the 

appropriateness of using this variable as a weight indicator. 

We assume that the independent variables engine load, average speed and amount of time spent 

driving in high gear capture the effect of infrastructure, landscape and terrain. Vehicles spend a lot of 

time travelling on routes with steep hills and winding roads. This restrict the speed the vehicles can 

travel with and how often they can drive in the highest gear. Steep hill climbing also implies a high 

engine load. Therefore, these variables are assumed to capture structural effects not primarily 

related to driving behaviour. 

On the other hand, variables like use of cruise control, automatic gear shift, rolling without engine  

load and running idle are supposed to capture differences in driving behaviour. We assume that the 
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value of these independent variables are more determined by drivers' choice than by infrastructure 

and terrain. 

We do not control for drivers in the multivariate model. The idea is that when all relevant variables 

are controlled for, the unexplained variation that is left is randomly distributed between drivers. 

Drivers do have an impact on fuel consumption though their driving behaviour. Drivers choose when 

to use cruise control, they choose when to use automatic gear shift, they choose when to let the 

engine run idle and so on. When all these variables are included in the model, variation in  their 

values will reflect variation in driving behaviour. The assumption is therefore that drivers as such do 

not have a significant impact on fuel consumption, their impact is mediated through their values on 

different driving behavioural indicators included in the model. 

Earlier we analyzed the difference between drivers using analysis of variance (ANOVA). The purpose 

of that analysis was to detect whether different drivers had significant different fuel consumption. 

We found that of five drivers, one had significant different fuel consumption than all the others but 

the other four had no significant differences between them. In that analysis we used drivers as 

indicators of different driving behaviour. In the multivariate regression model differences between 

drivers are measured explicitly by differences in driving indicators. Therefore, the multivariate 

analysis is a useful check of earlier analysis. 

A residual plot will reveal whether rest variation from the multivariate regression model is randomly 

distributed between drivers. If our assumption is true, residuals will show no trend and different 

drivers will not have systematically different residual values.  

Ideally, we would also control for the exact weight load and the route travelled by each driver on 

each day included in the model. The weight variable we use has some deficiencies as already 

discussed. Also, the route travelled will have an impact if some drivers consistently travel on some 

routes that have different road quality or less steep hill climbing than other routes. In Dynafleet 

driving indicators are measured on a daily basis. Drivers typically perform tasks, they transport goods 

from Lerum factory in Sogndal to some customers in other parts of Norway. There can be more than 

one task on one day or a task can last several days. There is consequently a discrepancy between the 

distance travelled or the fuel consumed by  a driver  per day and per task. Since driving indicators are 

only measured per day we use day as the entity for our analysis. The model then assume that drivers 

are randomly distributed on different routes and that there are no significant differences in freight 

load between them. We consider this to be a reasonable assumption but we will point it out explicitly 

so that considerations can be taken when interpreting the model's results. 

 Table 56 shows the result of estimating the multivariate regression model. A total of 1823 

observations are used in the estimation. 

Table 56 Multivariate regression model. Dependant variable fuel consumption in litre per 10 km. 

  
Regression 
coefficients 

Standard 
error t-Stat P-value 

Constant term § 2,61678592 0,1104821 23,6851567 2,975E-108 

Average speed # 50,9502687 7,00405173 7,27439926 5,1583E-13 

Running idle * 0,01246221 0,00099649 12,5060918 1,7605E-34 

Use of cruise control * -0,00337865 0,00063882 -5,28888832 1,38E-07 
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Use of automatic gear shift * -0,00720667 0,00068239 -10,5609861 2,4259E-25 

Above 90% of maximum torque * 0,0860449 0,00135609 63,4506055 0 

Use of highest gear *#  20,6243657 1,61463528 12,7733897 7,7451E-36 

Rolling without engine load* -0,02152745 0,00128984 -16,689953 2,8029E-58 

High weight load * 0,00233401 0,00024593 9,49059427 6,9627E-21 

Brake application 0,00085312 0,00022676 3,76215466 0,00017382 

Engine type: D13C540 ¤ 0,21517204 0,03010862 7,14652517 1,2852E-12 

Engine type: D16G700 ¤ 0,65940031 0,02161996 30,4996076 3,233E-165 

Winter season++  0,13603108 0,01267032 10,7361953 4,1282E-26 

Semitrailer % -0,11230945 0,02620989 -4,28500298 1,9234E-05 
* 

Measured as amount of driving time in percent with use of the specified property  #
 Inverse effects  

§ 
Constant 

term is engine type D13C500   
++

1 for winter months December, January, February, March, 0 otherwise     
¤
 1 if 

the vehicle has the relevant engine type, 0 otherwise 
%

1 if the vehicle is a semitrailer, 0 otherwise 

Table 56 shows the results of estimating the multivariate regression model.  Every independent 

variable has a significant effect on fuel consumption. 

The vehicles use more fuel in winter months. Controlling for other attributes, the fuel consumption is 

about 0,14 litre higher per 10 km in winter months than in the rest of the year.  If we  only use winter 

months as independent variable we find that on average the fuel consumption in winter months is 

0,22 litre per 10 km.  Above, in the bivariate ANOVA-analysis of winter months and fuel consumption,  

we found that the fuel consumption is 0,4 litre higher in winter. This last analysis included all data 

from the drivers database. The bivariate effect discussed here only include the drivers data that can 

be matched with vehicles data and therefore are used in the multivariate regression model.  The sum 

of the indirect effects of winter season on fuel consumption is therefore estimated to be 0,08 litre 

per 10 km, these are the effects of winter season that are mediated through other independent 

variables. 

The effect of engine types must be evaluated relative to the engine type with 500 horsepower. The 

effect of this engine type is the constant term.  If we assume mean values on all independent 

variables the expected fuel consumption for vehicles with 500 horsepower is 4,5 litre per 10 km. The 

engine type with 540 horsepower is expected to have an average fuel consumption that is 0,22 litre 

higher per 10 km. Vehicles with 700 horsepower will have a fuel consumption that is 0,66 litre higher 

per 10 km than the vehicles with 500 horsepower,  assuming the two types of vehicles have the same 

use of cruise control, highest gear, the same speed, both travel  in winter months and so on. 

If we look at the bivariate effect of the vehicle types, the vehicles with 700 horsepower will on 

average use 0,35 litre more per 10 km more than vehicle types with 500 horsepower.   The bivariate, 

total effect is less than the direct one because there are indirect effects from horsepower that have 

the opposite effect on fuel consumption as the direct effect. More horsepower can allow the vehicle 

to travel with higher speed in difficult terrain, more horsepower can allow for more use of cruise 

control, more time spent in highest gear and more use of automatic gear shift.  All these 

independent variables have a negative effect on fuel consumption, i.e. more use of cruise control will 

lower fuel consumption. Therefore the indirect effect of horsepower on fuel consumption through 

i.e. use of cruise control is negative since a positive effect on cruise control is multiplied by a negative 

effect of cruise control on fuel consumption. 
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Semitrailers have less fuel consumption per 10 km then vehicles with separate trailers. As already 

mentioned, this may be because the rolling drag is different for the vehicle types. On average, a 

semitrailer will use 0,11 litre less per 10 km assuming constant values on the other independent 

variables. 

If average speed is increased by 10 km an hour from 40 to 50 km per hour, the estimated fuel 

consumption in litre per 10 km is reduced by 0,25 litre, if we assume constant mean values for all 

other independent variables.  A vehicle travelling 100 000 km a year would then save 2 500 litre if 

average speed could be increased from 40 to 50 km per hour. If the average speed was increased 

from 30 to 40 km an hour the expected fuel savings would be 0,42 litre per 10 km all other things 

being equal. If a vehicle travels 100 000 km, this would imply fuel savings of 4 200 litre per year and a 

reduction in CO2-emissions of 11 tonnes. For average speed, the effect is highest when the average 

speed is low since we have used an inverse functional form for that independent variable in the 

multivariate regression model.  

Table 57 Estimated effect of speed increase on fuel consumption from multivariate regression model 

Average 
speed in 

km pr hour 

Estimated 
fuel 

consumption 
in litre pr 10 

km 

Savings 
relative to 
previous 

speed 

Savings 
relative to 
30 km an 

hour 

Total 
bivariate 

effect 

30 5,5 0,00 0,00 8,5 

40 5,1 -0,42 -0,42 6,7 

50 4,9 -0,25 -0,68 5,5 

60 4,7 -0,17 -0,85 4,8 

70 4,6 -0,12 -0,97 4,3 

80 4,5 -0,09 -1,06 3,9 
 

The effect of speed in the multivariate regression model is summed up in Table 57 which can be 

compared to the bivariate effects of average speed in Table 37. The effect of driving speed from the 

multivariate model is the direct effect while the effect from the bivariate model is the total effect 

which also include indirect effects.  The bivariate effects in the rightmost column in Table 57 are 

calculated with the same data sample as the multivariate model. The bivariate effect calculated 

earlier was based on drivers’ data alone, while the multivariate model is based on a joining  of data 

from both drivers and vehicles. When average speed varies, so does use of cruise control, use of 

automatic gear shift, rolling without engine load and so on. In the multivariate case we need to make 

assumptions about the values of the other independent variables in order to produce an outcome 

from the regression model. We have assumed mean values for all other independent variables. It is 

very probable that vehicles with low average speed will have a quite different use of cruise control 

than the mean value. This is captured in the bivariate case since it measures the total effect of 

average speed.  

The indirect effects of average speed are larger than the direct ones when average speed is low. 

When average speed increases, the indirect effects become negative so that the total effect is lower 

than the direct one for higher average speed values.  This confirms our assumption that increased 
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average speed facilitates use of other driving indicators that are beneficial for lower fuel 

consumption such as more use of cruise control, more time spent in highest gear, more rolling 

without engine load  and more use of automatic gear shits. The indirect effects of average speed 

mediated through these other indicators reinforces the negative effect of increased driving speed on 

fuel consumption. 

An increase of 10 percentage points in driving time spent running idle will increase fuel consumption 

by 0,12 litre per 10 km all other things being equal.  A similar increase in the amount of time spent 

with an engine load of more than 90% of maximum torque would increase the fuel consumption by 

0,86 litre.  

An increase in the amount of driving time spent in highest gear shift from 30 to 40 percentage points 

would reduce the fuel consumption with 0,17 litre. A similar increase from 40 to 50 percentage 

points would reduce fuel consumption by 0,10  litre per 10 km. Again, all other variables are 

assumed to have constant mean values. 

Table 58 Estimated effect of increase in relative amount of time spent driving in highest gear on fuel consumption from 
multivariate regression model 

Amount of 
time spent 
driving in 
highest 

gear 

Estimated 
fuel 

consumption 
in litre per 

10 km 

Savings 
relative to 
previous 

speed 

Savings 
relative to 

10% of 
driving 

time 

Total 
bivariate 

effect 

10 % 6,3 0,00 0,00 9,3 

20 % 5,3 -1,03 -1,03 6,4 

30 % 4,9 -0,34 -1,37 5,4 

40 % 4,7 -0,17 -1,55 4,9 

50 % 4,6 -0,10 -1,65 4,6 

60 % 4,6 -0,07 -1,72 4,4 

70 % 4,5 -0,05 -1,77 4,3 

80 % 4,5 -0,04 -1,80 4,2 

90 % 4,5 -0,03 -1,83 4,1 
 

Table 58 sums up the effect of an increase in the relative amount of time driving  in highest gear. The 

effect of an increase is highest when use of  highest gear is  low to start with. This is captured by the 

inverse regression effect. The effect of an increase of 10 percentage point is lower in the multivariate 

regression model than in the bivariate regression model. This is because the indirect effects of 

driving in highest gear have the same sign as the direct one so that the total effect of driving in 

highest gear is larger than the direct one. The total, bivariate effect of in the rightmost column in 

Table 58 is based on the same data sample as the multivariate model. 

Again, we see the same tendency for amount of driving time spent in highest gear as we saw for 

average speed. When the amount of driving time in highest gear is high the sum of the indirect 

effects from that variable is negative so that the total effect is less than the direct one. This indicates 

that   values of other independent variables that have a beneficial effect on fuel consumption also 

increases as a consequence of more driving time in highest gear. 
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An increase of 10 percentage points in the amount of driving time spent rolling without engine load 

would reduce the fuel consumption by 0,22 litre per 10 km. A similar 10 percentage point increase in 

the amount of time driving with high weight load will increase the fuel consumption by 0,02 litre per 

10 km. This suggests that weight load itself does not have a decisive effect on fuel consumption. As 

discussed above, we consider the validity of variable weight load in Dynafleet to be weak since the 

operationalization of high weight load is set to low so that  many vehicles with high own weight will 

automatically fall into this category. 

The effect of brake applications is weak, but significant. If brakes are applied  ten times more per 100 

kilometre the increase in fuel consumption is expected to be 0,01 litre per 10 km. The effect of using 

cruise control is also negative and statistically significant, a increase of 10 percentage point in the 

relative amount of driving time using cruise control will lower fuel consumption by 0,03 litre per 10 

km. A similar increase in driving time spent using automatic gear shift will lower the fuel 

consumption by 0,07 litre per 10 km. 

Table 59 shows elasticities for the regression coefficients. The table shows that the four most 

important independent variables in descending order are amount of time spent driving with engine 

load of more than 90% of maximum torque, average speed, use of automatic gear shift and  amount 

of time spent driving in highest gear.   

Table 59 Elasticities  

 
Mean Elasticity 

Average speed  0,016 0,175 

Running idle  12,277 0,033 

Use of cruise control  5,370 -0,004 

Use of automatic gear shift  93,523 -0,145 

Above 90% of maximum torque  14,395 0,266 

Use of highest gear   0,021 0,093 

Rolling without engine load 9,238 -0,043 

High weight load   68,086 0,034 

Brake application 73,598 0,013 

Engine type: D13C540 0,111 0,005 

Engine type D16G700 0,162 0,023 

Winter season 0,265 0,008 

Semitrailer  0,839 -0,020 
Mean value for dependant variable=4,620 litre per 10 km. 

Figure 48 shows the residual plot for the multivariate regression model presented in Table 56. The X-

axis in the plot is the predicted response (YHat) for each data item. The Y-axis is the residual for each 

data item,  the difference between the actual (Y) and predicted value (YHat) for each data item used 

in the model. The residuals should be randomly distributed without any obvious  trend or pattern in 

their  variation. Such a trend can indicate that an important explanatory variable is left out of the 

model. Also, the residuals should not be distributed in series, which indicate that they are not 

independent of each other as they are assumed to be.  
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As already discussed, the effect of drivers when all driving behavioural indicators are controlled for 

are assumed to be randomly distributed. Each driver is identified with a colour code in the plot. If our 

assumptions are correct, the colour codes should not display any pattern or trend but appear 

randomly distributed. Some drivers share colour code but the visual inspection should still detect any 

pattern if it is present in the plot. Each driver is also identified with a number so that G_55 is the 55th 

registration for driver G.   

There are no obvious trends or patterns in Figure 48. The different colours also seem to be randomly 

distributed. A visual inspection therefore seems to confirm our assumptions. There might be a slight 

bow-shaped tendency in the distribution of residuals, this may suggest that a second-degree 

polynomial should be applied for one or more of the independent variables.  We have not consider 

this tendency to be strong enough to invalidate our assumptions. 

There is one item that has a specific high absolute residual value, this is the 28th registration for 

driver AL. This driver had a low fuel consumption on December 8th 2011 with 3,9 litre per 10 km. The 

driver's predicted value from the model given values for the independent variables is 6,4 litre per 10 

km. The driver had a daily average speed of just over 48 km per day which is low given that the P10 

value for average speed is 42,2 km per hour per day. The driver spent 38,6% of driving time running 

idle which is high given that the P90 value is 24,5%.   The driver also spent just a little over 10% of the 

driving time driving in highest gear, that is very low given that the P10 value is 33,7% of driving time. 

All in all, the multivariate regression model explains 91 % of variation in fuel consumption 25. This is a 

very large proportion which  indicates that we have a model with good explanatory power. 

 Figure 48 Residual plot for multivariate regression model 

 

Finally, Table 60 shows the total and direct effects for each independent variable except average 

speed and relative amount of driving time spent in highest gear which we have presented earlier. 

The total, bivariate effects are estimated with the same data sample which is used in estimation of 
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the multivariate model. The table shows the biggest differences in effects for engine types. The effect 

of 700 horsepower as opposed to 500 horsepower has a direct effect of 0,66 litre per 10 km and a 

total effect of 0,35 litre per 10 km. The effect of 540 horsepower has a direct effect of 0,22 litre per 

10 km and a total effect of 0,16 litre per 10 km. The indirect effects from engine types are mediated 

through other independent variables that varies between different engine types. Use of cruise 

control, use of automatic gear shifts, power outtake, average speed etc can be different in different 

engine types. We do not know exactly how these indirect effects are mediated, but since the direct 

effect is higher than the total the sum of all the indirect effects must be negative. 

For the semitrailer variable the situation is quite the opposite. In absolute terms, the total effect is 

larger than the direct one. This means that some of the effect we assign to the semitrailer variable in 

the bivariate case is mediated through other independent variables. These other independent 

variables must be intermediary since no other independent variable can cause a change in a vehicle's 

type. Therefore, the difference between the total and direct effect of the variable semitrailer cannot 

consist of spurious effects, these effects must be indirect ones. 

Table 60 Total and direct effects 

 

Direct 
effect 

Total 
effect Difference 

Running idle 0,012 0,016 0,004 

Use of cruise control -0,003 -0,023 -0,019 

Use of automatic gear shift  -0,007 -0,024 -0,017 

Above 90% of maximum torque  0,086 0,080 -0,007 

Rolling without engine load -0,022 0,001 0,022 

High weight load   0,002 0,016 0,014 

Brake application 0,001 0,005 0,004 

Engine type: D13C540 0,215 0,164 -0,051 

Engine type D16G700 0,659 0,347 -0,312 

Winter season 0,136 0,221 0,085 

Semitrailer -0,112 -0,339 -0,227 

 

The difference in direct and total effect for rolling without engine load in Table 60 is also interesting. 

The total effect of this variable is positive but not statistically significant in the bivariate case. In the 

multivariate model the effect of rolling without engine load is negative and statistically significant, 

more rolling without engine load decreases fuel consumption. We believe there are spurious effects 

that cause the bivariate effect of rolling without engine load to be weak and positive. Variables like 

use of engine load higher than 90% of maximum torque has an impact on rolling without engine load. 

Rolling without engine load is therefore an intermediary variable between power outtake and fuel 

consumption. When maximum power outtake is high the vehicle is driving uphill on poor 

infrastructure with little potential for rolling without engine load. Therefore, power outtake increases 

fuel consumption and lower the potential for rolling without engine load. Since the effect of power 

outtake on fuel consumption and the effect of rolling without engine load on fuel consumption have 

different signs, power outtake is shadowing the effect of rolling without engine load when we do not 

control for it in the bivariate case. The effect of rolling without engine load will be less in the 

bivariate than in the multivariate case or the effect may even change sign. 
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Similar reasoning can be done with the variable average speed. Rolling without engine load is also a 

intermediary variable between average speed and fuel consumption. The effect of speed on rolling 

without engine load and fuel consumption has opposite signs, when speed increase fuel 

consumption goes down while the potential for rolling without engine load increases. Therefore the 

effect of average speed is shadowing the effect of rolling without engine load. More rolling without 

engine load takes place when average speed increases so we cannot tell them apart. The effect of 

rolling without engine load is therefore assigned to average speed.  When we compare different 

levels of rolling without engine load for drivers with identical speed the effect becomes clear, more 

rolling without engine load decreases fuel consumption.  

In this case the effect of rolling without engine load is positive in the bivariate case and negative in 

the multivariate. Measured in absolute values, the negative value is also 22 times higher.  From the 

discussion above we assume this is because the relative amount of time spent with an engine load of 

more than 90% of maximum torque is shadowing the effect of rolling without engine load in the 

bivariate case. 

Does rolling without engine load has an effect or not? What is the correct effect of rolling without 

engine load? We have established a fact that every truck driver know: Rolling without engine load is 

beneficial for fuel consumption when the conditions for using it is present. The correct conditions for 

use of using rolling without engine load are given by certain values in the other independent 

variables. Therefore the direct effect from the multivariate model is the correct effect. We can by use 

of that model quantify the effect of rolling without engine load: About 0,2 litre per 10 km if the 

amount of driving time spent rolling without engine load increases by 10 percentage points. 

Conclusions 
We have divided the independent variables into two main groups. The first group consists of what 

we call structural variables, they measure the effect of infrastructure, terrain and landscape with 

steep hill climbing and narrow, winding roads. This group consists of the independent variables 

relative amount of time spent driving with an engine load above 90% of maximum torque, average 

speed and relative amount of time spent driving in the highest gear. Rolling without any engine load 

can also be said to be part of this group. We argue that drivers cannot choose values for these 

independent variables voluntarily, choices are restricted by external structural factors as described 

above. 

The second group consists of independent variables which measure driving behaviour. These are 

relative amount of time running idle, relative amount of time spent using cruise control,  use of 

automatic gear shifts and number of brake applications per 100 km.   

We believe that the effects in the multivariate models show that structural variables have a greater 

impact on fuel consumption than indicators for driving behaviour. Two of the three most important 

independent variables (measured by elasticities) come from the group of structural variables. We 

therefore conclude that the structural variables are the most important ones for increased fuel 

savings and reduced emissions of CO2. The most important measures for reducing fuel consumption 

and emissions from goods transport with large vehicles would therefore be better infrastructure and 

reduction of steep hill climbing on narrow, winding roads. 
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On the other hand, use of automatic gear shift have a large impact on fuel consumption. The effect is 

larger than the one of average speed. Therefore, driving behaviour is not irrelevant. Fuel 

consumption is not indifferent to different driving behaviours. 

The model has some deficiencies. The weight load indicator include the weight of the vehicle. Ideally 

this indicator should only measure the weight of the freight load. We also only have the amount of 

time spent driving with what is defined as a high weight load including the vehicles' own weight. It 

would be better to have freight weight in tonnes. We did a separate analysis of based on freight 

weight given by the freight company where we also controlled for the route vehicles are travelling. 

This analysis show a much higher effect of freight weight. We therefore believe that the weight effect 

based on data from Dynafleet is underestimated.  
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Appendix A: Deleted observations 
The following observations in Dynafleet for vehicle A were deleted because of unreasonable data 

values: 

Date Time 
Distance 

km 

Fuel 
consumption 

litre 

Fuel 
consumption 

pr 10 km 
Average 
speed Route 

03.01.2012 00:21 397,8 3,5 0,1 1499,4 No tracking report 

19.10.2011 08:56 1313,2 212,5 1,6 151,1 Lidköping-Kaupanger 

15.09.2011 11:19 1163,9 233,0 2,0 109,5 Bjøberg-Lidköping 

29.09.2011 03:24 415,1 104,5 2,5 127,2 Indre Arna - Gudvangen 

28.07.2011 08:32 962,5 225,0 2,3 118,8 No tracking report 

11.08.2011 06:21 638,7 180,0 2,8 106,1 No tracking report 

01.12.2011 08:53 755,0 189,5 2,5 103,1 Kaupanger-Vang 

17.11.2011 05:05 464,9 136,0 2,9 93,5 Kyrkjebø-Fodnes 

04.01.2012 09:20 775,6 242,5 3,1 85,1 Ålesund-Bromma 

10.05.2011 10:36 769,6 262,5 3,4 83,0 No tracking report 

 

For the last two observations were deleted because we believe an average speed above 82 km pr 

hour is not achievable on roads in Western Norway. For the last observations, May 10th 2011, there  

is no tracking report on vehicle A so we have no driving route to assess the driving speed against. We 

chose by discretion to delete this observation. 
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Appendix B: Freight data 
 

Date Vehicle To 

Fuel 
consumption 
litre pr 10 
km 

Freight 
load in 
tonnes 

02.12.2011 H Eastern Norway 6,246 27,68 

09.12.2011 H Eastern Norway 5,53 12,26 

16.12.2011 H Eastern Norway 6,228 27,45 

20.12.2011 H Møre og Romsdal 6,996 30,29 

21.12.2011 H Eastern Norway 5,838 27,39 

27.12.2011 H Eastern Norway 6,326 27,46 

30.12.2011 H Eastern Norway 5,732 27,52 

01.12.2011 E Western Norway 5,654 28,92 

02.12.2011 E Eastern Norway 4,725 22,87 

06.12.2011 E Trøndelag 4,98 27,81 

13.12.2011 E Møre og Romsdal 4,766 16,3 

14.12.2011 E Eastern Norway 4,93 27,87 

19.12.2011 E Eastern Norway 5,127 29,32 

23.12.2011 E Trøndelag 5,287 29,68 

30.12.2011 E Southern Norway 4,957 27,13 

02.12.2011 F Southern Norway 4,804 26,74 

06.12.2011 F Western Norway 5,562 29,81 

07.12.2011 F Eastern Norway 5,128 28,32 

13.12.2011 F Eastern Norway 4,75 17,47 

20.12.2011 F Eastern Norway 5,888 28,9 

27.12.2011 F Western Norway 4,717 17,26 

30.12.2011 F Eastern Norway 5,136 15,36 

01.12.2011 D Eastern Norway 5,887 29,49 

05.12.2011 D Eastern Norway 5,443 27,96 

07.12.2011 D Eastern Norway 5,622 30,42 

12.12.2011 D Western Norway 6,196 28,54 

14.12.2011 D Southern Norway 5,565 30,46 

21.12.2011 D Southern Norway 5,231 29,73 

23.12.2011 D Western Norway 5,066 14,59 

27.12.2011 D Eastern Norway 5,553 28,08 

02.12.2011 G Southern Norway 6,117 28,4 

07.12.2011 G Southern Norway 5,873 28,51 

09.12.2011 G Eastern Norway 6,184 26,72 

13.12.2011 G Møre og Romsdal 7,098 28,34 

14.12.2011 G Eastern Norway 5,933 28,3 

19.12.2011 G Western Norway 6,363 29,83 

20.12.2011 G Western Norway 6,175 29,68 

21.12.2011 G Western Norway 6,381 27,4 

28.12.2011 G Southern Norway 5,395 28,27 

30.12.2011 G Trøndelag 5,853 28,34 
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07.12.2011 C Southern Norway 5,78 27,99 

09.12.2011 C Eastern Norway 5,334 29,22 

14.12.2011 C Trøndelag 5,72 27,71 

16.12.2011 C Eastern Norway 5,189 25,05 

20.12.2011 C Eastern Norway 5,36 28,66 

23.12.2011 C Western Norway 6,183 29,74 

28.12.2011 C Southern Norway 5,36 29,35 

09.12.2011 B Eastern Norway 5,789 27,44 

13.12.2011 B Western Norway 5,58 17,9 

15.12.2011 B Eastern Norway 5,15 26,85 

02.12.2011 I Eastern Norway 6,35 29,36 

06.12.2011 I Eastern Norway 6,19 28,11 

09.12.2011 I Eastern Norway 6,048 27,68 

13.12.2011 I Eastern Norway 6,35 28,87 

15.12.2011 I Eastern Norway 5,634 28,15 

16.12.2011 I Eastern Norway 5,68 28,56 

20.12.2011 I Møre og Romsdal 6,68 31,02 

21.12.2011 I Eastern Norway 5,49 27,82 

23.12.2011 I Eastern Norway 5,803 10,29 

28.12.2011 I Trøndelag 5,668 27,8 

30.12.2011 I Eastern Norway 6,154 28,43 

06.12.2011 P Eastern Norway 6,125 26,89 

13.12.2011 P Western Norway 6,536 28,47 

14.12.2011 P Eastern Norway 6,136 28,97 

16.12.2011 P Western Norway 5,26 19,19 

19.12.2011 P Eastern Norway 6,137 29,62 

21.12.2011 P Eastern Norway 6,312 29,13 

23.12.2011 P Eastern Norway 5,783 26,38 

28.12.2011 P Eastern Norway 6,153 27,15 

30.12.2011 P Eastern Norway 6,141 28,41 

01.12.2011 J Møre og Romsdal 5,367 17,54 

09.12.2011 J Western Norway 4,174 7,14 

13.12.2011 J Eastern Norway 5,78 28,39 

15.12.2011 J Western Norway 5,151 19,15 

19.12.2011 J Western Norway 5,86 28,2 

21.12.2011 J Western Norway 5,556 25,65 

29.12.2011 J Western Norway 5,709 28,81 

30.12.2011 J Eastern Norway 5,612 28,48 

05.12.2011 A Western Norway 5,936 27,5 

07.12.2011 A Eastern Norway 4,802 23 

09.12.2011 A Trøndelag 5,363 27,56 

14.12.2011 A Western Norway 5,563 25,64 

16.12.2011 A Trøndelag 5,751 30 

20.12.2011 A Møre og Romsdal 5,653 29,52 

22.12.2011 A Eastern Norway 5,291 27,06 

27.12.2011 A Eastern Norway 5,434 29,36 
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30.12.2011 A Eastern Norway 5,111 25,09 
 

 


