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1. Background 

1.1. The country 

Norway is a key energy nation in Europe with an entirely exceptional set of resources1:  

• the petroleum industry, including oil companies, petroleum refiners, fuel 

transport and end-user sales at gas stations 

• the gas industry, including natural gas extraction, distribution and sales 

• the electrical power industry, including electricity generation, distribution and 

sales 

• the coal industry 

• the nuclear power industry, and 

• the renewable energy industry, comprising alternative energy and sustainable 

energy companies, including those involved in hydroelectric power, wind power, 

and solar power generation, and the manufacture, distribution and sale of 

alternative fuels. 

Norway2 has only one per cent of Europe's population, but 20 per cent of the hydropower 

resources, 50 per cent of the water reservoirs (stored water for hydropower production), 

40 per cent of the gas resources and 60 per cent of the oil resources. 

As assets’ yields become harder to access and even harder to forecast, it is vital that the 

industry is collecting and maintaining its data effectively.  Big data is relevant to the 

whole energy sector.  However, since the industry sector is too vast, in this report, we 

will limit our discussion to hydroelectric power and smart meters. 

Norwegian power production is almost 100% renewable and emission-free. 95 per cent 

of the power production stems from the 1,600 hydropower plants which are spread all 

across the country, and some 3.5 per cent stems from wind power. The latter is expected 

to grow significantly in the coming years, due to very good wind resources in Norway. 

The Norwegian power grid is 330,000 km long and has a security of supply rate of 99.998 

per cent. To take a leading role as the first renewable and all-electric society in the world, 

unique renewable energy resources in Norway make a good point of departure on the 

path towards an emission-free society, including green growth and new jobs in other 

relevant industries. 

 
1 https://www.energinorge.no/ 
2 https://energifaktanorge.no/en/norsk-energiforsyning/kraftproduksjon/ 
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Norway's interconnections with neighbouring countries are of vital importance for 

supply security, and it also enables the Norwegian renewable energy industry to 

participate actively in the European market. This is particularly important due to the 

fact that most years, Norway is a net exporter of electricity. 

1.2. The region 

The Sogn og Fjordane region is rich in renewable energy, and it`s annual electricity 

production of 15-17 TWh comes mainly from hydro and wind power. This report focuses 

on an impact of Big Data in the regional electric power sector including the following 

two power companies. 

Sogn og Fjordane Energi3 (SFE) is a power company that operates in Sogn og Fjordane 

in Norway. SFE is divided into three divisions: power production, sales to end users, and 

grid management. SFE builds on a long history as a hydropower producer, and has built 

itself up as one of the largest producers of renewable energy in Western Norway. The 

production operations are grouped in the company SFE Produksjon, which includes 

operation, maintenance and rehabilitation of existing production facilities, power 

development and development activities, and a power trading environment that drives 

physical and financial sales of the power production. The company has an average, 

annual power production of close to 2 TWh (average production), which corresponds to 

consumption in around 100,000 homes. SFE is the operator of 25 of 27 fully and partly 

owned power plants in Sogn og Fjordane. 

Sognekraft4 is a power company. The grid company of Sognekraft is merged with the 

grid companies of Aurland Energi and Lærdal Energi to the company Sygnir. The new 

company is now operating the grid in the municiplities Sogndal, Vik, Lærdal and 

Aurland. The company's core business is production, distribution and sale of electric 

power. The company has a power production of 608 GWh, and also has operational 

responsibility for power plants owned by others (125 GWh). Sognekraft sells about 700 

GWh of power to end customers.  

This report represents a literature study and an overview based on some initial dialogue 

with SFE and Sognekraft. 

 

3 https://sfe.no/ 

4 https://www.sognekraft.no/ 
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The Big Data in electric power makes the energy production, consumption and pertinent 

technical revolution deeply integrated into the Big Data philosophy, and promotes the 

systematic application of Big Data technology in the regional sector, and also accelerates 

the development of related industries and business model innovation.  
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2. Big Data Technologies 

2.1. Traditional paradigm to the Big Data paradigm 

Big data has changed the way that we adapt in doing businesses, managements and 

explorations. Data-intensive computing is coming into the world that aims to provide 

the tools that we need to handle Big Data problems. Table 1 outlines the shifts required 

to move from traditional to the Big Data paradigm.  

Table 1 Traditional paradigm to the Big Data paradigm 

Traditional Paradigm New Paradigm 

Some of the data 

E.g., An online transaction records main data fields, 

a timestamp and IP address. 

All of the data 

E.g., Clickstream and path analysis of web-based 

traffic, all data fields, timestamps, IP address, 

geospatial location where appropriate, cross channel 

transaction monitoring from web. 

Clean Data 

E.g., Data sets are typically relational, defined and 

delimited. 

Chaotic Data 

E.g., Data sets are not always relational or structured. 

Deterministic  

E.g., In relational databases, the data has association, 

correlation, and dependency following classic 

mathematical or statistical principles.  

Complex coupling  

E.g., Data can be coupled, duplicative, overlapping, 

incomplete, have multiple meanings all of which 

cannot be handled by classical relational learning 

tools.  

Examining of Data to Test Hypotheses  

E.g., Defined data structures induce the generation 

and testing of hypotheses against known data fields 

and relationships. 

Discovery of Insight 

E.g., Undefined data structures induce exploration 

for the generation of insights and the discovery of 

relationships earlier unknown. 

Lag-time Analysis of Data  

E.g., Data needs to be defined and structured prior to 

use, and then captured and collated. The period of 

extracting data will vary but often involves a delay. 

Real-time Analysis of Data  

E.g., Data analysis takes place as the data is 

captured. 
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2.2. Definition of Big Data 

An important point to be noted, while discussing the concept of Big Data, is that the 

phrase can refer to either huge and distinct datasets, or technologies processing such 

datasets. In literature, Big Data is classified into two different types: static Big Data and 

real-time Big Data. Both types of datasets can be structured or unstructured (Akerkar, 

et al. 2014). We can define Big Data as given in the following Figure 1: 

 

Figure 1 Big Data definition 

 

 

Figure 2 The graphics illustrating Big Data (Hopkins, et al. 2011) 

The following Table 2 provides some business benefits which can be realised by using 

Big Data solutions in the electric power sector: 
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Table 2 Business benefits using Big Data solutions 

Improved 

Operations 

Drive combined insights from a single data management 

platform for structured, unstructured and real-time data. Reduce 

the operational Non-Productive Time (NPT) and Health, Safety 

and Environment (HSE), regulatory compliance cost due to ‘real-

time risk management’. 

Unified 

Ontology for 

energy sector 

Provide personnel with access to searchable institutional 

knowledge that compensates for limited expert staffing and 

achieving accuracy and helping personnel find what they are 

looking for more quickly. Given the shortage of experts, the time 

saved in accessing and loading data is important. 

Faster 

Production Rate 

Accelerate time-to-production by minimising data bottlenecks 

that reduce asset team productivity. Enable faster decision-

making by Geologist & Geophysicists and operational teams as 

risk profiling and forecasting is performed. 

Asset 

Development 

Improve asset uptime and predict the need for asset related to 

operational demands. 

Enhanced safety 

and efficiency 

Enhanced safety and efficiency in operation by linking different 

relevant data with physical models.  

 

Using a combination of Big Data and advanced analytics in electric power production 

and supply activities, experts can accomplish strategic and operational decision-making. 

 

2.3. Big Data Opportunities 

The opportunity that Big Data presents to all industry sectors is in the potential to 

unlock the value and insight contained in the data industries already held via the 

transformation of information, facts, relationships and indicators. The value of Big Data 

for industries is limited by their ability to efficiently utilise Big Data and the ability to 

derive useful information from this data. With every opportunity, there come barriers 

and business must overcome these barriers to explore the benefits of Big Data. 

Important areas that Big Data may influence are described below. 
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Data management 

There are potential savings in time and money if industries implement smarter data 

management practices that were aware of the needs of Big Data analysis. Data sources 

from differing enterprises and operational areas would be of greater benefit to multiple 

industries and for multiple purposes if there were greater transparency. For example, 

through better business process management, redundant data collection processes can 

be reduced by reusing data collected from separate processes. 

Personalisation of services 

We have moved from an era of experiencing things at a macro level to experiencing 

things at a personal level. Big data analytics may produce value by revealing a clear 

picture of a customer. Big data is able to achieve this due to its characteristic granularity. 

This granularity may assist in unlocking the possibility of personalised services tailored 

to the individual and delivered by industry. The granularity in Big Data opens up new 

opportunities for personalising services. When a service provider knows something 

specific about a user then there is an opportunity to tailor the service offered 

accordingly. This will be most useful when the data in question relates to the user’s 

needs, and when the personalisation is done in a manner that is prominent for the 

transaction being undertaken or service being used.  

Predictive analytics 

The alliance of multiple datasets from disparate sources in combination with advanced 

analytics technologies will advance problem-solving capabilities, and in turn, will 

improve the ability of predictive analytics to reveal insights that can effectively support 

decision-making. In short, Big Data opens up the field of reliable predictive analytics. By 

assessing the relationships embedded in large datasets it is possible to construct a new 

generation of models explaining how things are likely to evolve in the future. This 

approach can be blended with scenario planning to develop a series of predictions for 

how a system will respond to distinct choices. The state of the art in predictive analytics 

can deliver forecasts for some domains with a very high degree of precision, offering an 

auditable, scientific basis for making decisions in complex systems. 

Productivity and efficiency 

The analysis of Big Data sources can be used to identify cost savings and opportunities 

to increase efficiency and reliability, which will directly contribute to an improvement 

in productivity. This can in turn help to boost further innovation. 



 

 

      

3. Characteristics of Electric Power Big Data 

The existing data collection and management systems in the electric power sector are 

relatively isolated because these systems come from different departments and the data 

management of different departments is isolated. The electric power Big Data exists 

problems of multi-source heterogeneity, information redundancy, different time 

granularity, inconsistency of statistical models and uneven data quality. These problems 

will pose challenges to the integrated management, analysis and processing of electric 

power Big Data. 

Electric power Big Data is a subset of Big Data in the electric power industry. So it has 

the “4V” features of Big Data, including volume, variety, velocity and value. For the 

electric power Big Data, their “4V” characteristics are reflected in the following aspects 

(Zhou, Fu and Yang 2016), as shown in the Table 3 below. 

 

Table 3 Characteristics of energy Big Data in 4V 

4V Description 

Volume 

Introducing smart metering devices and sensors in smart energy systems 

as well as combining with other data sources might present many new 

opportunities as well as many tough challenges. The first challenge is the 

massive amount of data. This challenge is not only reflected in the storage 

side but more importantly in the analysis and processing of the electric 

power Big Data. For example, one smart meter, with a resolution of 

seconds to minutes, generates much fewer data than one phasor 

measurement unit (PMU), with a resolution of milliseconds; yet an 

advanced metering infrastructure (AMI) may generate a large volume of 

data coming from millions of customers. 

Variety 

This means increasing complex data types. In energy systems, the data are 

not only traditional structured relational data but also many semi-

structured data like the weather data and Web services data, as well as 

unstructured data like customer behaviour data and the audio and video 

data. “The energy Big Data is a mix of structured, semi-structured and 

unstructured data (IBM 2014).” With the increasing utilisation of social 

media and call centre dialogues in the energy sector to support decision 

makings, the energy Big Data has become more varied. 

- Structured: standard and data models  
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- Unstructured: images, log curves, well log, maps, audio, video, etc.  

- Semi-structured: processed data such as analysis, interpretations, daily 

drilling reports, etc. 

Velocity 

It refers to the speed requirement for collecting, processing and using the 

electric power Big Data. The speed of data collection and processing is very 

fast ranging from 5- or 15-mins interval to sub-second interval. For the 

many real-time tasks in energy systems, such as equipment reliability 

monitoring, outage prevention or security monitoring, the typical analytics 

algorithms that need many hours or more time to run are not competent. 

An example is a continuous stream of data, as opposed to a once-in-a-while 

event-triggered data from a sensor. Although the majority of power system 

sensors are event-triggered, there are also sensors that produce data 

streams at high rates. Also, the data circulation and processing speed of 

power enterprises are very fast, which realises real-time processing and 

analysis of a great deal of data in a fraction of a second. 

- Real-time streaming data from various equipment, and sensors   

- Relevant data fragments need to be automatically detected, assessed and 

acted upon. 

Value 

Energy Big Data itself is meaningless unless valuable knowledge that 

supports effective and efficient decision makings on the energy 

management process can be discovered. Also, the value of electric power 

Big Data is sparse, which means that the knowledge mined, and the value 

obtained from large amounts of data may be limited. Therefore, in the era 

of Big Data, we should pay more attention to the overall data rather than 

the sample data (Mayer-Schönberger and Cukier 2013). Moreover, for the 

power monitoring data, the abnormalities of the data are the important 

data, because the abnormal data is the key basis for condition based 

maintenance. 

- Enhancing production  

- Reduce costs, such as non-productive time (NPT)  

- Reduce risks, especially in the areas of safety and environment 
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According to (CSEE Committee 2013), there are also the “3E” (energy, exchange and 

empathy) characteristics of electric power Big Data. Energy (data-as-an-energy) means 

that energy savings can be achieved by Big Data analytics. Exchange (data-as-an-

exchange) refers to the Big Data in the energy system that needs to be exchanged and 

integrated with the Big Data from other sources to better realise its value. Empathy 

(data-as-an-empathy) means that better energy services can be provided, users’ needs 

can be better satisfied, and consumer satisfaction can be improved based on electric 

power Big Data analytics.  
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4. Sources of Electric Power Big Data 

The type of data that can eventually form Big Data in power systems can be classified 

into domain data and off-domain data (Akhavan-Hejazi and Mohsenian-Rad 2018). The 

domain data can be further categorised by their sources. Here are a few examples:  

Telemetry and supervisory control and data acquisition (SCADA) data  

It enables a continuous flow of measurements on grid equipment status and parameters 

and other grid variables. The SCADA data can have various sources such as renewable 

energy resources which generate a huge amount of data, such as real-time production 

and equipment status, and is able to be used for specific purposes. For instance, the data 

from condition monitoring systems of many wind turbines can be utilized in predictive 

maintenance strategies. 

Oscillographic and Synchrophasor data from intelligent electronic devices 

(IEDs)  

It makes up of voltage and current waveform samples in time or frequency domains that 

can create a graphical record. Modern IEDs provide high-accuracy, time-stamped power 

system measurements primarily in the two formats. Synchrophasor measurements are a 

growing part of real-time operations at utilities during power system disturbances. 

Combining synchrophasor and oscillographic data during post-disturbance analysis 

enables to provide a wide-area context for a better understanding of the conditions 

leading up to and following a disturbance (Nakafuji, et al. 2017). 

Consumption data  

This data is most often the smart meter data. Energy consumption patterns in the 

consumption data can be analysed and extracted, so very valuable conclusions can be 

made for managers and governments. In particular, the forecasting of the energy 

consumption of buildings and campuses in terms of time series has immense value for 

energy efficiency and sustainability in the context of smart cities (Pérez-Chacón, et al. 

2018). 

Asynchronous event data  

Even data often comes from devices with embedded processors generating messages 

under a variety of normal and abnormal conditions.  
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Metadata  

Metadata is any data that can describe other data. Grid metadata is highly diverse and 

may include internal sensor data, calibration data, and other device-specific 

information.  

Financial data  

This data may include day-ahead and real-time market bids and price data, bilateral 

transactions, and retail rates. 

 

Moreover, power grid operation relies also on different forms of off-domain data, i.e., 

the data that is not specific to or necessarily intended for the power sector. There are 

many forms of existing or emerging off-domain data that are yet to be exploited for the 

power grid operations and energy enterprise. Examples include traffic data, social media 

data, trade indices, and image and video streams. 

The digitalisation of electric power systems boosts the rate of data generation. However, 

the characteristics of data flowing throughout the system reveal the challenges afore-

mentioned (i.e. volume, variety, velocity). Therefore, Big Data is an essential technology 

to realise the paradigm shift in the electric power sector, and electric power Big Data 

(EBD) is the term that refers to data related to the sector. The sources of EBD can be 

categorised into two groups, namely electric utility data and supplementary data 

(Refaat, Abu-Rub and Mohamed 2016).  

Electric utility data  

Electric utility data contains all of the data and information that a utility can reveal from 

a smart grid system. The data includes many kinds of data such as SCADA data, phasor 

measurement units (PMU) data, smart meter data, IEDs’ data, asset management data, 

digital protective relay (DPR) data, digital fault recorder (DFR) data, sequence data of 

event recorder (SER) data, AMI data, control and maintenance data for equipment, and 

automated metering reading (AMR) data (Nafi, et al. 2016).  

Supplementary data  

Supplementary data includes all other data sources which are beneficial for Big Data 

applications such as time-reference data, geographical information system (GIS) data, 

global positioning system (GPS) data, weather and lightning data, seismic reflection 
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data, animal migration data, financial market data, social media data and regulatory 

reporting data. 

Figure 3 summarizes comprehensive Big Data in the electric power sector. 

 

Figure 3 Energy Big Data 

Also, regional power companies collect a large amount of sensor data from different 

hydroelectric powerplants, including but not limited to: vibration, temperatures, water 

levels, voltages, power levels and several other units. This naturally gives access to a huge 

source of information that has the potential of being used for Big Data analytics, 

predictive and optimal planning of maintenance and other big-data analysis in 

combination with other sources of information, such as weather observations, financial 

market prices and other spot prices in the electric power market. It is also possible to 

use the sensor data alone for trending and real-time surveillance of our power plants. 

We believe that an unexploited benefit can be achieved by pulling on the other 

information sources mentioned above, to further increase robustness, performance and 

profit in the hydroelectric power-industry. The Table 4 presents an example of sample 

data sources in the regional electric power industries.  



 

 

      

Table 4 Example of electric power data sources 

Case Data Type 
Data Source 

(Internal/External) 
Data Format 

Data Collection 

Method 

Data Collection 

Rate (GB 

/month) 

Data 

Volume 

Data Retention 

Period 
Data Storage 

Sensitive/ Private 

Data 

Smart 

home 

network 

 

Smart Meter 

Data 
Internal 

AWS Data 

Bases 

APIs based on 

REST technology 

About 

30GB/month 

About 

15TB 
10 years S3 O 

Smart meter 

data at 

consumer grid 

points, power 

plants and 

transformer 

substations 

External on physical 

servers, internal partly 

utilizing cloud 

services/partly physical 

servers 

Smart 

metering data 

(AMS): 

Hadoop DFS, 

XML 

timeseries 

database. 

Smart metering 

data (AMS): 

Radio GSM mesh 

network 

 

Substations: 

Python API + IoT 

standard utilizing 

network protocol 

About 

5GB/month 

About 

15TB 

More than 10 

years for 

substations data 

 

Less than 10 

years for 

consumption 

metering points 

due to GPRS 

Smart metering data 

(AMS): Data 

management, 

physical servers 

controlled. 

 

Substations’ data: 

Private database. 

O 

(It can still be 

utilized for 

research 

projects.) 

 

 

 

 

Smart 

energy 

grid 

Sensor data Internal 
Historian DB 

(GE) 
API ODBC 

Less than 

100GB/month 

Less than 

5TB 
8 years  O 

Weather 

statistics 
External  

APIs based on 

REST technology 
  

More than 

30 years 
 X 

Weather 

forecast 
External  

APIs based on 

REST technology 
  

About 

10 years 
 X 

Energy spot 

prices 
External  FTP-server 

Less than 

1GB/month 

Less than 

1TB 

About 

20 years 
 O 

Energy market 

prices 
External  FTP-server 

Less than 

1GB/month 

Less than 

1TB 

About 

20 years 
 O 



 

 

      

 

5. Big Data Flows in Electric Power Industries 

The deployment of smart grids and prosumer participation in producing and consuming 

energy markets has resulted in enormous data management issues for electric power 

generation or/and distribution companies. Governments and power distribution 

companies around the world realise the challenges of managing Big Data in the electric 

power sector (Potdar, et al. 2018). The Figure 4 below illustrates the energy data lifecycle 

from data collection to strategic decision-making. 

 

Figure 4 Lifecycle of energy Big Data 

 

Data collection  

This first step in energy data management involves capturing data from several sources 

in the electric power sector. The most common and well-known source of data originates 

from the AMI that captures data from smart meters from IEDs installed at end-user 

buildings. Depending on the population of a given location, this data can quickly 

escalate in size. That is a massive amount of data just from one source, which is the 

smart meter.  There are other sources of electric power data, such as sensor data, voltage 

data, power quality data, control devices, mobile terminals, metadata, event-related data 

(e.g., breakdowns, voltage loss), reliability data, operating system data, energy grid 

equipment data, historical data and third-party data. In addition to this, smart energy 

grids rely on weather data to forecast demand and trigger on-demand renewable energy 

generation along with fault detection and user electric power consumption predicting 
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(Zhou, Fu and Yang 2016) (Daki, et al. 2017). Other than weather data, numerous other 

kinds of Big Data sources (e.g., mobile phones, Electric Vehicles (EVs), connected 

thermostats, real estate data, and customer energy behaviour profiles) integrate with the 

electric power sector to provide better forecasting and prediction services 

(Fehrenbacher 2012). Geographic information systems (GIS) also have an important role 

in the sector. Data from GIS sources can provide valuable information that can be used 

in decision-making systems since it provides local geographic information for many 

issues, such as identifying solar farm locations (Sánchez-Lozano, et al. 2013), 

electrification of rural areas etc. Since data is collected from so many various sources, 

devices and platforms, it requires the following tasks such as cleansing, proper 

integration and storage. 

Data pre-processing  

The pre-processing step includes the following two main tasks: 

• Cleaning: Energy-related data is acquired from several sources as discussed earlier. On 

many occasions, such data might be inaccurate, meaningless and incomplete. Filtering 

such impure data is essential before analysing them. Data cleansing refers to such 

filtering processes to keep the data consistent and constitutes five distinct steps.  The 

first step determines the faulty or abnormal data; next step is to detect these data; then 

correct the error; document it and modify the entry process to alleviate future data 

errors (Chu and Ilyas 2016). During the five steps, various points should be considered 

such as data format, completeness and its rationality to minimise errors during analysis. 

• Redundancy Elimination: Redundant data means surplus data that can be neglected 

during the transfer and analysis process. Identifying such data is the first step. While it 

generally increases processing time and requires additional storage, eliminating the 

redundant data reduces the data transfer cost and results in energy and/or storage space 

savings (Sai and Chen 2017) (Chen, et al. 2017). 

Data Integration 

Energy Big Data consists of a variety of data collected from various sources as 

mentioned. Since the collected data originates from different sources, it may be not 

uniform and pose a significant problem for data analysis. Hence, the data should be 

appropriately integrated (Guerrero, et al. 2017). For example, data could be in different 

formats, which need formatting to a standard format before data analysis. In most cases, 

different service providers use different types of smart meters, each running different 

software, and following a proprietary storage format. Such inconsistency becomes a 
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massive problem for the transmission and generation companies when trying to utilise 

such data (Zhou, Fu and Yang 2016). One solution to the data integration issue is 

standardisation. Standardisation will help in the longer-term when all the smart meters 

(new and legacy) and other smart grid infrastructure could talk to each other and share 

data seamlessly (Neumann, et al. 2015). Another solution for this problem can be a 

mediator software which can convert the data and maintain uniformity. There are 

several Big Data analytics tools available in the market that can streamline data 

integration. For instance, service-oriented architecture (SOA) can be utilised for data 

integration purposes. Enterprise service bus (ESB) and common information models 

(CIM) are some examples of SOA realisations (Daki, et al. 2017). 

Data Storage  

In the traditional energy grids, historical data is saved for forecasting purposes and does 

not require excessive storage space. However, in smart energy grids, there are other data 

resources requiring storage for effective demand management using renewable energy 

sources (Qiu and Antonik 2017). Another important issue is the in-/out-put data speed 

because there is a need for real-time data analysis in smart energy grids. So, energy data 

storage must have two essential features: a powerful data access interface system for 

speeding up data transfer and large and reliable storage space for storing various data. 

Thus, to deal with electric power Big Data, a desirable storage system would be organised 

into three parts: first part stores the data on a disc array, second is the connection and 

network subsystem to bridge between discs and servers, and the last part is the 

management software to share data between various other servers. Another way is a DFS 

like Google’s GFS, Hadoop’s HDFS and Taobao’s TFS which is cheaper and provides 

higher performance (Mosaddegh, et al. 2016). Such DFSs allow sharing of resources 

among multiple users (Cao, et al. 2017). Additionally, NoSQL databases (e.g., MongoDB 

and Cassandra) also provide efficient mechanisms to store massive electric power Big 

Data. 

Data Analytics, Mining and Knowledge Discovery  

In the electric power sector, a massive amount of data is gathered regularly. Such data 

is analysed to discover different (or abnormal) patterns of usage within energy grids (Qiu 

and Antonik 2017). Various kinds of analysis are conducted on electric power Big Data, 

for examples: customer behaviour analysis (Park, Kim and Kim 2014), load analysis 

(Eltantawy and Salama 2014), state analysis (Weng, et al. 2016), operation analytics 

(Moradi, Eskandari and Hosseinian 2014), fault analysis (Jiang, et al. 2014), and signal 

analytics. Sort of analysis can be classified into two broad categories in terms of the 
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response time required for data processing. The first category does not require fast 

response time and includes load analysis for forecasting long-term demand and 

consumer behaviour analysis. The other needs a very fast response time for real-time 

analysis. It includes various cases such as smart meter data for real-time price 

forecasting, identifying and analysing faults within the energy grids. Due to the 

characteristics of Big Data such as variety and velocity, analytical tools used for the 

analysis of electric power Big Data require high robustness, high scalability, high-

velocity and fault tolerance features. And selecting a proper tool is significantly critical 

for Big Data analytics from the utility perspective (Diamantoulakis, Kapinas and 

Karagiannidis 2015). There are useful real-time processing tools like Splunk and Storm 

for analysis that provide fast execution time, fault tolerance capability and parallel 

computational ability. Hybrid processing tools, such as Apache Flink and Spark, are 

other options for the data analysis, where high execution time is not required. 

Data Representation and Visualisation  

Data visualisation as the next step after data analysis assists the decision-makers in 

understanding the analysis because it provides analytical results in forms of visual 

representations like graphs (Srinivasan and Reindl 2015) (Stefan, et al. 2017). Visualising 

results are more efficient than reviewing pure numbers to gain information and insights 

from data. It offers visible patterns which aid to identify and detect sources of concerns 

and opportunities. Stakeholders can make effective decisions from the visual 

interpretation of data than textual or numeric forms. Thus, visualisation is also 

significant. Furthermore, it is equivalently essential to the end consumer since it can 

easily offer the consumer their usage patterns. There are several tools and techniques 

available in the market that the utilities and consumers can use to visualise electric 

power Big Data. For example, the use of 2-D and 3-D visualisation tools to present the 

load forecast, user consumption, generation from the renewable source and power 

quality. Tableau is one useful tool to visualise the data intuitively. GIS software such as 

ArcGIS, QGIS, MapInfo, GRASS, gvSIG and Maptitude are good alternatives for 

visualising smart grid data on the maps (Stefan, et al. 2017). 

Real-Time Decision-Making 

Data analysis paves the way for decision-making. Stakeholders take critical decisions in 

real-time based on real-time analytics from the analytics engine, for example, important 

decisions like real-time pricing, on-demand renewable generation, estimating capacity 

constraints, forecasting demand and provisioning real-time supply that require real-

time decisions. It helps to find the faulty sections in electric power grids and to take 
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corrective actions to restore the grid back to complete functionality, consequently 

consumer confidence and revenue increases. Several real-time demand response (DR) 

algorithms facilitate timely and accurate decision-making. 

 

Figure 5 shows an overview of the data and energy flows on the energy market including 

smart grid systems, prosumers and aggregators. Smart grids enable consumers to 

optimize their electric power usage and align it with their needs and, when appropriate, 

with their electric power generation and storage preferences and result in making profits 

(Parag and Sovacool 2016). Prosumers using photovoltaic (PV) or small hydro systems 

in a domestic household can produce electricity, and excess electric power from the 

prosumers can be stored, sold, or/and shared with neighbours in the same 

neighbourhood. Although, such energy from renewable sources is based on a non-

continuous nature and is influenced by weather conditions. 

 

 

Figure 5 Energy and data flows on energy market, smart energy grid, prosumer and aggregator 

Thus, the energy market is efficiently able to comprise grid-connected prosumers who 

are managed via an aggregator. The aggregator is responsible for analysing energy data 

flow and making decisions accordingly to manage the community groups of prosumers 

who mutually offload and use their generated energy or trade-off their surplus electricity 

to other energy buyers (e.g., individual consumers, energy retailers, or utility grid) 

(Bellekom, Arentsen and Gorkum 2016). However, the concept of prosumers and energy 

market and architectures modelling dynamic prosumers are still in its infancy (Anthony, 

et al. 2019). 
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On the other hand, today, the concept of micro-grid is being used for the purpose of 

helping the environment via several renewable and available resources, reducing 

generation costs and managing energy efficiently. The idea was begun with Advanced 

metering infrastructure (AMI) to develop demand management, increase energy 

efficiency and a self-repair electric grid, thus it enables to improve reliability and 

respond to natural disasters or deliberate sabotage (Dogaheh and Dogaheh 2017). In 

addition, it allows consumers to reduce their electric power consumption via proper 

scheduling of different appliances and real-time electricity pricing (RTEP). It might be 

achieved with smart energy home more effectively. 

 

Figure 6 Energy and data flow on AMI network with smart home 

 

Figure 6 illustrates the concept of AMI network and smart home (Home Area Network: 

HAN) and data and energy flows on these networks. HAN domain and the smart meter 

domain (AMI) enable consumers to monitor and control their electric power 

consumption profile and of their appliances via an in-home display (IHD) which consists 

of a computer, tablet, or smartphone. Smart meters include many interconnected smart 

meters (i.e., AMI) which installed and monitored by utility companies in order to 

transmit load information and demand-requirement signals between the smart homes 

and energy market. In addition, as afore-mentioned, energy produced from renewable 

resources can be stored by power conversion and battery management systems and 

consumed by the prosumers for an EV or their appliances. Remained energy will be 

transmitted to the energy grid through a smart meter.



 

 

      

6. Big Data Challenges in Electric Power 

Sector 

6.1. Main challenges 

There are several data related challenges in the electric power sector. It is an imperative 

task to extract business-critical intelligence and insights from large volumes of data in a 

complex environment of legacy diverse systems and fragmented and decentralised 

solutions that are common in the sector. Generally, companies are concerned with 

challenges associated in managing substantial complexity of data such as data coming 

from their hydroelectric power-plants, including but not limited to — vibration, 

temperatures, water levels, voltages, power levels and several other units. Also, data is 

growing exponentially in the form of both structured as well as unstructured data. The 

key challenges and possible approach to tackle these challenges are given in Table 5.  

 

Table 5 Big data challenges 

Challenges Approach 

Data from different sources (structured, 

unstructured & real-time) 

Leverage the power of Hadoop, NoSQL databases for scalable 

information management systems in batch and near-real time 

streams to fulfil need for homogenous, integrated and 

perspective-based information 

Huge volume of domain specific 

information embedded in each data 

cluster 

Agile Big Data techniques, distributed processing, data mining 

Use of different software products for 

data interpretation and decision making 

Agile Big Data techniques for consistent asset models, 

optimized operational expenditure (OPEX) and capital 

expenditure (CAPEX), effective monitoring and integration 

between operation and business system 

Difficulty in using data to respond to 

user needs quickly and efficiently 

Analysing productivity, planning, uncertainty in delivery of 

energy and managing storage 

Huge expenses on data management, 

handling streams of often incompatible 

data 

Empower consumers with web, mobile-enabled dashboards by 

easy slice and dice of data, planning innovative services and 

predictive risk modelling 
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6.2. Other challenges 

Following are the challenges related to data collection, analytics, energy services, 

applications and relevant regularisations: 

Data integration 

As we mentioned in the previous section, smart grid data are gathered from various 

sources such as sensors, actuators, transformers and other electrical and computing 

infrastructure that forms part of the grid ecosystem. Such data needs to be integrated 

with other data to provide situational awareness and assist in decision-making. Data 

semantic approaches need to be investigated to address the data integration issue. 

Therefore, the collected data needs to be semantically tagged to facilitate 

interoperability among different sources. In addition, semantic technologies can aid to 

solve problems of electric power Big Data integration. For example, the nature of electric 

power Big Data can be studied from an integration perspective, the value of data 

originating from and the structure of different sources may be different. Hence, 

integrating needs to happen spatially and temporally. Schema-level mapping 

approaches should also be further investigated to address the upcoming challenges of 

electric power Big Data. 

Bad data detection 

In many cases, bad data poses a massive problem because information systems for smart 

grids are interconnected, and the data flow through each of these systems. Such polluted 

data should early be detected and prevent the pollution distributing and infiltrating into 

other systems. Thus, detecting bad data becomes a critical research challenge that 

requires immediate attention. The data also could enter the systems when an attacker 

tries to attack by purposely injecting false or incorrect data. From a security point of 

view, it is a critical challenge because incorrect data will lead to incorrect decision-

making (e.g., excessive energy generation or low tariffs). In this way, bad data has a 

significantly negative impact on smart grid operations. Hence, it should be dealt with 

extreme caution (Kosut, et al. 2010) (Xie, Mo and Sinopoli 2011) (Tajer 2017). 

Standards and interoperability 

The smart grid consists of various types of devices, networks, management software like 

SCADA and a variety of electric power Big Data and results in various communication 

devices technologies used in the background of the energy grids. Such communication 



                                         

 

30 

 

B I G  D A T A  I N  E L E C T R I C  P O W E R  I N D U S T R Y  

systems or devices have a different feature, communication and processing speeds, and 

distinct data transfer mode like parallel series. Thus, data transfer becomes a hard task 

for these devices. Therefore, an interoperability mechanism is required to make the 

smart grids more flexible and efficient. In addition, there are needs for open 

standardisation for better interoperability and to ensure secure and sustainable smart. 

Some of the standardisation used in smart grids such as IEEE 1815, IEEE 2030.5, IEC 

61850, IEC 61850-90-7 (Potdar, et al. 2018). 

Big data knowledge representation and processing 

Big data analytics requires machine learning and artificial intelligence techniques. It is 

often known that the process and outputs from such techniques lack intuitive physical 

interpretation (Wagstaff 2012). Thus, it is important to fill this gap by offering suitable 

domain knowledge interpretation to make a correct decision based on the intelligence 

derived from those techniques. This task might be also challenging because of the Big 

Data characteristics of energy data. 

Big data security and privacy 

Smart energy Big Data might often contain individuals’ private information which 

requires to be protected under various legal regulations (Powner 2011) (Simitis 1994). For 

example, smart grids and meters collectively generate various data instances that have 

privacy and security concerns. The data also contain sensitive information that could be 

used to make decisions affecting the safe operation of the critical infrastructure of an 

organization or institution. Therefore, security and privacy are very crucial issues. 

However, it is also very challenging due to the Big Data nature of the smart energy data, 

distributed and open environment of the infrastructure. On the other hand, from a 

personal user privacy perspective, consumers will only trust a technology if they know 

that their data is protected and does not impact their privacy. Such consumer sensitive 

data needs to be securely transmitted to protect their privacy. Furthermore, for secure 

and safe data transfer, all the data must be encrypted before transferring it. 

Scalable and interoperable computing infrastructure 

A smart grid is usually a highly distributed system (Hu and Vasilakos 2016). Energy Big 

Data is gathered from every corner including electric power generation, distribution, 

renewable energy powered vehicles and smart meters and so on. Such data includes 

dynamic streaming and non-streaming data, structure and unstructured data. Also, 

there is a constant flow of the data between machines and humans. It is very challenging 
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to manage, store, share, process and analyse such data. Thus, A scalable and 

interoperable computing infrastructure is required. 

Cost optimisation of smart grid 

One of the particular areas attracting attention from smart grids is studying the cost of 

data management. Even though there are several studies on the cost of data centres and 

how to cost-effectively manage large data centres, specific studies on data management 

cost of smart grids are missing. The smart grid is a complex network, and data is one of 

the most important elements of the smart grid ecosystems. Thus, it is one significant 

research challenge (Potdar, et al. 2018). 

Real-time Big Data intelligence 

According to (Huang, et al. 2014), overlapping of peak demand from individual homes 

may cause blackouts at some substations within several seconds. And it results in hugely 

increasing damages in terms of cost and human resource over time. Therefore, decision 

making in real-time is essential for both system operation and real-time pricing. An 

intelligent decision making needs to analyse current and historical data. Given the huge 

volume and high variety of such data, it is challenging enough to process them. With 

the constraint of real-time requirement, it will be extremely difficult to design new 

algorithms that can provide real-time intelligence from electric power Big Data. 

Distributed and parallel intelligence 

The electric power sector is experiencing a data explosion collected from distributed 

sources from smart grids. A distributed and parallel intelligent approach can effectively 

address this problem, which can also reduce the raw data accumulation and 

communication significantly. Although existing aggregation or summarization methods 

can also achieve the same aim of reducing large raw data, such methods are targeting 

local raw data without considering overall system target. Furthermore, they can lose very 

useful information which would be needed for specific applications. A proper distributed 

intelligence approach should be built upon a solid theoretical basis to approximate the 

relevant overall performance indicator. For instance, for anomaly detection, distributed 

local intelligence based on the observations from a single node or several neighbouring 

nodes should be enabled to estimate the overall sensor network data probability density 

distribution (Cui, et al. 2012) (Yuan, Li and Ren 2011). 
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Quality-of-Service (QoS) 

As aforementioned, the smart grid is a complex network of heterogeneous devices and 

distributed systems transmitting different types of data at varying intervals with 

different levels of speed. The QoS aspect becomes more critical during data 

transmission. If the captured data reaches the destination in time, the data becomes 

valid for other systems also. However, network congestion and other factors can cause 

delay resulting in a poor quality of service. It may even introduce errors or raise the 

complete loss of data. For example, it becomes a major concern as it may result in 

suboptimal power quality if it corrupts the smart meter data or impacts the data centre 

if the air-cooling systems fail. Therefore, the needs and urgency for developing QoS 

frameworks are paramount. Relevant challenges are as follows: (1) identifying and 

agreeing upon QoS metrics for data acquisition, transmission, storage and security, (2) 

defining and enforcing service level agreements, and (3) methods to monitor and 

implement QoS strategies (Sooriyabandara and Ekanayake 2010). 

Demand response  

The demand from electric power consumers has been increasing along with the 

emerging types of machines such as EVs and smart home furniture. Thus, there has been 

arousing the concern on the stability and reliability of electricity supply. However, since 

the traditional energy grid lacks real-time response between demand and supply, it 

might not meet these demands due to its inflexibility (Maharjan, et al. 2013). Therefore, 

DR is expected to be an aspect in the future smart grid (Jiang, et al. 2016). Demand Side 

Management (DSM) is one of the most extensive application fields of Big Data analytics 

in the electric power sector, ranging from consumer segmentation to dynamic pricing 

(Yang and Zhou 2015). Valuable knowledge can be discovered from the massive electric 

power Big Data collected in near real-time by IEDs. Such knowledge enables many 

demand-side decision-making and marketing strategies development (Zhou, Fu and 

Yang 2016). For example, electric power load forecasting (Park, et al. 1991) is an 

important research content in smart grid, which predicts future load demand through 

analysis of historical load data, weather data, and social factors, etc. Energy load 

classification (Yang and Shen 2013) (Chicco 2012) is the process to classify different load 

profiles into groups using the various clustering methods. The energy consumption 

patterns of different users can be identified by the classification, which can support the 

development of competitive marketing and energy strategies and personalized energy 

services. For instance, dynamic pricing (Oldewurtel, et al. 2010) (Chao 2011), also referred 

to variable pricing or real-time pricing, can guide the user’s energy consumption 
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behaviours and improve the reliability of power systems by different and appropriate 

pricing strategies. 

Asset management 

The electric power industry is one of the typical asset-intensive industries. Both the 

electric power companies and the energy grid enterprises often face many asset 

management problems, such as resource sharing, asset retirement monitoring, 

operation and maintenance management, and inventory management (Zhou, Fu and 

Yang 2016). Analytics of electric power Big Data enables the efficiency of asset 

management and collaborative operation. The data of production, operation, marketing 

and management can be integrated and shared to achieve throughout electric power 

generation, transmission, transformation, distribution, and consumption. For example, 

the massive sensor data gathered from energy system infrastructure combined with 

advanced Big Data analysis and visualization techniques can change the traditional ways 

of power system operation and maintenance. In addition, the risk and unnecessary 

expenses of manual operation can be reduced, and the reliability of energy grid systems 

can be improved. Also, real-time monitoring collection and analysis of energy 

consumption data can be carried out to reduce the risks of a power failure and grid 

collapse. Furthermore, the weather data is also important to enhance the reliability and 

stability of energy systems. Particular weather patterns discovered can be used to predict 

future outages and identify the problem positions or areas, thus leading to faster failure 

warnings and recovery resulting in reducing asset damage (Wigle 2014). 

Predictive maintenance 

With the advance of energy power, the companies and prosumers of the electric power 

industry have more and more turbines resulting in generating electric power Big Data. 

Moreover, the turbines are becoming bigger and more powerful. Thus, they need to add 

more resources for maintenance purposes, increasing operation and maintenance costs. 

A predictive maintenance system based on traditional technologies requires having one 

system in each power plant since they use neither private nor public cloud where 

centralise all the data. Thus, it is difficult to analyse electric power data gathered from 

different places, in a unique location. In addition, they need to hire qualified people to 

manage each predictive maintenance system. However, having all the data produced by 

the turbines placed in a central system involves a huge computational cost for being 

capable of processing all the information fast enough to inform a future failure. 

Furthermore, the notification has to arrive in time to repair it before the turbine' 

component breaks down. Another problem in traditional technologies is scalability. 
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Since the volume of data to be processed hugely increases, it is difficult to add more 

computational resources to handle it. In this regard, although the scalability might 

usually be provided by buying more powerful hardware (vertical scalability), it is very 

expensive and limits scalability (Canizo, et al. 2017). 

Energy data policy and regulations 

In (IqtiyaniIlham, Hasanuzzaman and Hosenuzzaman 2017), authors reviewed 

development policies and challenges faced by European smart grids that are supported 

by the European Union. Major challenges discussed are system integration, customer 

involvement, legal hurdles and technology development. From the integration 

perspective, different and distributed systems need to be able to share the data with each 

other to ensure seamless operation. Regarding this, one of the technical barriers being 

the data models along with the metering infrastructure and standardisation of 

communication protocols. In addition, compatible storage and decentralised 

distribution and management are critical elements to ensure successful operations 

(IqtiyaniIlham, Hasanuzzaman and Hosenuzzaman 2017). 

 



 

 

      

7. Recommendations 

For the regional electric power industries, it is important to emphasis the application of 

Big Data technology and processes instead of designing and developing essential 

technologies by itself. Key prerequisites for data-driven innovation are access to data, 

ownership and security risk. It is important to achieve a balance between the interests 

of regional suppliers and operators when it comes to ownership of, access to and 

responsibility for data. The recommendations proposed in the following lines are to 

guide regional electric power suppliers and operators about how to utilise Big Data to 

manage day-to-day operations. 

Data collection and governance 

Although the volume of electric power Big Data is large and the electric power Big Data 

contain a lot of valuable knowledge, their value and data quality might be not so high in 

most cases. The timeliness, integrity, accuracy and consistency of electric power Big 

Data need to be improved. It also requires complete data governance strategies, 

organisation and control procedures. The prerequisites of many electric power Big Data-

intensive applications are the high quality of standardization and format uniform. 

Data integration and sharing 

Currently, there are still many barriers to integrate and share electric power Big Data 

from various sources. Various standards and models of data definition, storage, and 

management are often adopted by different electric power businesses, and there are also 

many redundant data collection and storage. On the one hand, a lack of accessible data 

suffers researchers that are working on smart energy Big Data management. Recently, 

there have been some initiatives on electric power Big Data integration and sharing, 

such as Green Button Data5 and WikiEnergy.  

Data processing and analysis 

Traditional data analysis techniques in data mining, machine learning, statistical 

analysis, and data management and visualization may encounter difficulties in dealing 

with the electric power Big Data. Effective and efficient processing and analysis 

techniques for electric power Big Data are the premise and important support for smart 

energy management. In addition, modelling and simulation always involve a huge 

amount of data and a lot of parameters including spatial and temporal granularities. 

 

5 Green Button Data, http://www.greenbuttondata.org/ 
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Regarding the different modelling elements and parameter settings at multiple scales, 

dimensions, modelling and simulation results should be properly interpreted to support 

the various decision makings.  

Security and privacy  

The security mechanism of the IT infrastructure for smart energy systems needs to be 

further improved. Also, protecting private and sensitive customer data is a key issue in 

electric power Big Data analytics along with General Data Protection Regulation 

(GDPR). Consumers should have the right to own their data, and their personal data 

such as household electricity usage should be protected. Also, it has to be only used as 

the consumer allows. Industry self-regulation, technical means, and strengthened 

legislation should all be considered to enhance data security and privacy.  

Information technology infrastructure 

The explosive growth of electric power Big Data and the speed requirement for 

collecting, processing and utilising electric power data have brought a series of 

challenges for traditional IT infrastructure. The infrastructure needs to be improved in 

the capabilities of data storage, data processing, data interaction, data exchange, data 

visualization and network transmission to better support Big Data-driven smart energy 

management. 

Professionals of Big Data analytics and smart energy management 

Energy sector with Big Data is becoming more and more a multidisciplinary field. Thus, 

cooperation among the energy experts, data scientists, IT professionals, engineering 

specialists and management experts are essential for the regional (smart) energy sector. 

Big data analytics on smart energy management is a relatively new field, and 

professionals in these areas are still lacking. Therefore, courses and programs in 

management science, data science, energy science, computer science and social science 

should be encouraged and developed to train specialists that qualify for the various jobs 

in the electric power sector. 
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8. Conclusion 

With the advance of Big Data technologies, there are many opportunities and challenges 

when we adopt and apply the technologies to various industrial sectors. It also applies 

to the electric power sector. There are a variety of electric power data sources in the 

regional power sector. To encourage the effective and efficient utilisation of Big Data 

technologies in power industries in the Sogn og Fjordane region, this Teknoløft project 

report analysed relevant Big Data technologies and investigates pertinent opportunities 

and challenges. We considered the data lifecycle in the knowledge discovery process and 

decision making by conducting pertinent literature review. Also, flows of electric power 

Big Data in energy grids and smart home networks are illustrated. 

Finally, five major open issues and fourteen other challenges on the utilisation of Big 

Data in the regional electric power business are presented. Six recommendations are 

suggested to deal with identified issues and challenges. The recommendations are 

provided in order of priorities. As a next step, the recommendations can be converted 

into small and/or medium scale projects for actual business in the Sogn og Fjordane 

region.   
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